首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成生物学旨在基于工程学原理,通过人工合成生物调控元件、模块和基因调控网络等对细胞进行设计和改造,以实现细胞和生命体的定向演化。在医学研究中,合成生物学主要采用人工设计合成治疗性的基因回路,制备工程化细胞植入体内,纠正机体已发生缺陷的生物调控元件,以达到治疗疾病的目的。本文对合成生物学的兴起、发展及其在医学中的应用和研究进展进行了综述。  相似文献   

2.
细胞信号网络是细胞应对环境变化、调控细胞功能以及决定细胞命运的中央处理器。运用合成生物学方法,人工设计细胞信号网络对于"细胞机器"的构建具有重要作用。信号网络通过编码定量的动力学信号,能够在多个维度对细胞工程中的多个子功能单元进行调控。本文介绍了天然信号网络的动力学功能的研究进展,阐述了基于信号网络的功能蛋白质设计的合成生物学相关的方法和思路,并展望了信号网络在下一代合成生物学中的战略意义。  相似文献   

3.
合成生物学是以工程学思想为指导,通过合成一些功能元件、模块、系统,对生命体进行有目的的设计、改造,使细胞或生物体具有特定的新功能。现已在生物医药、环境能源、生物材料等领域广泛应用。现将重点介绍近年来哺乳动物合成生物学在各种疾病治疗上取得的研究成果,包括治疗代谢性疾病、肿瘤、免疫相关疾病等;同时,探讨合成生物学未来在临床治疗中的意义和挑战。  相似文献   

4.
虽然合成生物学还处于早期研究阶段,但最近十年,该领域取得了非常显著的研究进展。合成生物学是以工程学思想为基础,通过人工设计、改造基因线路,从而赋予细胞或生物体新的功能,现已广泛应用于各个领域。随着人们对基因线路设计的深入研究,使得合成生物学研究走向临床应用成为可能。本文将围绕哺乳动物合成生物学在疾病治疗方面的研究进展,介绍基因线路的设计思路和方法、不同诱导因子调控的开环式基因线路以及用于疾病诊疗的闭环式基因环路在生物医学领域的应用。最后对合成生物学走向临床治疗的应用前景和挑战进行展望。  相似文献   

5.
合成生物学通过改造天然系统或创造生物元件、模块和系统赋予生命体新的功能,为农业、能源、制造业及医学进步带来了巨大推动力。对元件、模块或系统的精准、定量及高效调控将对合成生命系统的控制至关重要。细菌小RNA是一类长度在50–300 bp且通常不具备翻译能力的功能小分子,在环境胁迫响应、代谢变化适应和细菌毒力控制过程中发挥着不可替代的调控作用。近年来,基于天然小RNA设计构建的人工小RNA调控元件的工作日益丰富,实现了对目的基因甚至通路的有效抑制或激活。人工小RNA分子小、灵活性高,可程序化且易于设计,几乎不会对宿主细胞造成代谢负担,因此在合成生物学中具备广泛应用前景。为促进对人工小RNA的机理理解及应用拓展,本文围绕若干人工小RNA调控元件进行了系统介绍及比较;此外,总结了其在合成生物学中的代表性应用;最后,对其未来优化方向进行了讨论。  相似文献   

6.
合成生物学是一个新兴的研究领域,它是指新的人工生物路径、有机体或装置的设计和构建,或者对自然生物系统进行重新设计。利用合成生物学改造肠道微生物中的共生细菌,使其实现对肠道菌群或肠道细胞状态的靶向调控,可以有效的改善宿主的肠道健康状态。由于该方法可塑性较强,可调控的靶标范围广泛、调控针对性强,副作用少,因此已逐步应用于肠道疾病的治疗中。综述了合成生物学在杀死肠道致病菌,维持肠道菌群平衡,协助肠道代谢营养物质,改善代谢疾病,诊断肠道疾病,定位肿瘤组织及调节肠道免疫系统等方面的研究进展,分析了现阶段合成生物学用于改善肠道健康状态中的优势和存在的问题,并在此基础上提出了"应用合成生物学建立人体肠道健康调控的新型功能性益生菌系统,实现对肠道健康的个性化医疗"的技术路线和管理体系。  相似文献   

7.
合成基因组学标志着生命科学的研究从读取自然生命信息发展到写出人工生命信息阶段,颠覆了现有生命科学研究的范式。酵母基因组合成计划是合成基因组学研究的代表性工作,在合成型酿酒酵母基因组上开展的基因组重排研究可以揭示不同层次基因组序列与功能的关系。人工真核染色体的快速精准构建以及基因组重排近期取得一系列成果,高效提升了细胞工厂的生产效率,加速了微生物的进化和生物学知识的发现。现通过综述国内外研究现状及发展趋势,探讨合成基因组与基因重排在生命DNA设计及功能发现中的发展前景。  相似文献   

8.
含藻人工多细胞体系研究是合成生物学的重要研究内容之一。微藻利用光能,通过光合作用在人工多细胞体系中发挥光能转换的作用。本文综述了含藻人工多细胞体系的构建、形成机制及其在废水处理中的应用。共培养是研究藻-菌相互作用的有效手段,而复杂的生物群落构建还需要进一步的完善。目前已经建立的人工光合多细胞系统包括高效藻类塘、海藻酸盐固定化、藻菌絮体、颗粒污泥和生物膜等。通过高通量测序等手段,可以从上至下地了解体系内微藻和微生物的动态变化。光合人工多细胞体系已经用于废水中有机污染物、抗生素等有害污染物以及重金属脱除。光合人工多细胞体系适配才能形成高效、稳定的系统,可以充分利用代谢互补和代谢协同,并逐步构建结构精准的多细胞体系。本文也展望了含藻人工多细胞体系存在的问题和可能的解决途径。  相似文献   

9.
天然产物是人类疾病预防和治疗药物的最重要来源。合成生物学技术的蓬勃发展为天然产物的开发注入了全新的活力。文中重点介绍了如何利用合成生物技术进行复杂天然产物合成人工生物系统的设计与构建,包括与此相关的生物元件理性设计、生物元件挖掘、途径装配与集成,模块的组装与系统的适配等内容。  相似文献   

10.
合成生物学研究为生命医学领域中所需求的综合性、多元化基因网络实现时间和空间复杂维度基因调控提供可能,并助力临床医学应用研究实现信息精准化、智能诊疗一体化发展,为未来医疗卫生事业革命性快速发展提供强大的技术支撑。该文以合成生物学技术平台设计开发的人工定制细胞、电子药物、智能诊疗一体化系统等方向为核心内容,对最新的合成生物学生命医学研究案例进行综述分析,讨论当前合成生物学在医学应用研究中存在的问题和未来所面临的挑战,并对其发展前景进行展望。  相似文献   

11.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

12.
随着合成生物学的研究与发展,人们利用微生物细胞或无细胞体系对代谢途径中的多酶体系进行编程和重组,成功合成了大量的功能化合物。但由于多酶体系分散度高,造成体系代谢流速和流量不平衡,代谢效率和产量降低。生物体内存在多种天然的多酶自组装复合体,如纤维素小体机器、细胞信号转导中的激酶级联通路等。研究表明,这些体系中存在的底物通道效应和协同作用机制是多酶复合体具有高催化效率的原因。模拟和借鉴天然多酶体系,并结合生物体中蛋白质与DNA、RNA等相互作用设计和构建人工自组装多酶体系,是提高代谢效率的重要途径。现对蛋白质自组装机器在人工多酶体系中的研究进展进行综述。  相似文献   

13.
合成生物学与天然产物开发   总被引:1,自引:0,他引:1  
天然产物依然是临床用药的重要来源。合成生物学的诞生为天然产物的开发提供了全新的机遇,传统的微生物药物、植物天然产物等研究领域都因合成生物学而获得新生。重点介绍了合成生物学在天然产物开发中的应用,包括新化合物及其生物合成元件的筛选,基于理性设计的天然产物异源生物合成,人工底盘细胞的系统优化等。  相似文献   

14.
合成生物学的核心思想是将现代工程学的原理与方法引入对生命系统的改造和构建中.生命活动覆盖从分子到细胞再到有机体等不同层次.合成生物学研究同样跨越了多个层次,例如,在分子层次进行生物元件和器件的设计和标准化、通过合成基因线路研究生物网络的设计和调控原理、在途径和网络层次进行细胞内代谢网络和代谢途径的人工设计改造等.本文一方面试图对与此有关的既有计算机模拟与设计方法加以总结和介绍,另一方面探讨这些不同层次的计算模拟与设计工具可应用于哪些方面的合成生物学问题,以及既有方法可能在哪些方向上还有比较大的发展潜力,能更好满足合成生物学研究需求.  相似文献   

15.
材料是人类赖以生存与发展的物质基础,科技和社会的进步都离不开材料技术的发展,未来先进材料的合成和制备必然朝着绿色可持续、低耗高产出、精细可调控、高效多功能的方向发展。以"基因调控·工程设计"为核心的合成生物学技术从分子、细胞层面极大地推动了生命科学的发展,也已经并继续为材料科学的发展注入新的思路和活力。本文将围绕合成生物学技术在材料科学中的应用,以基因回路设计为核心,概念应用为线索,重点介绍合成生物学技术在高分子生物材料和无机纳米材料领域的开发和生产,细胞展示和蛋白定向进化战略对分子材料的筛选和优化,"活体"功能材料、工程菌调节的人工光合系统功能材料体系以及基因回路在材料科学中的应用。  相似文献   

16.
合成生物学以工程化思想为指导,通过多学科交叉,设计改造生命系统,以加深对生命的认识和创造新功能,为应对人类面临的诸多挑战提供支撑。合成生物学的精髓在于借助精妙的设计实现对生物系统的构建和模拟,从而更好地了解生命现象。该文主要集中介绍合成生物学研究中的设计技术,包括生物元件设计、人工基因线路设计和代谢线路设计、人工基因组设计,归纳总结目前已有的设计技术手段和策略。  相似文献   

17.
合成生物学使能技术的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
作为一门拥有巨大潜力的新兴工程学科,合成生物学的发展主要得益于各种使能技术(enabling technology)的创新开发与应用.从基本功能元件的构建与标准化,到高通量的微芯片基因合成技术与各种尺度(从bp至Mb)的DNA拼接组装方法,再到强大的基因组编辑工具,在过去十几年里合成生物学使能技术取得了长足的进步.同时,新颖的使能技术也为遗传学、癌症治疗、疾病监测以及生物制造等领域提供了优秀的研究工具,促进了多个学科的发展.如果将这些使能技术作为"配件工具",那么相对应的"主体设备"——底盘细胞也因工具的不断创新得到了快速发展.微生物最小基因组的分析以及对基因组的连续删简优化,为构建一个具有可预测、可控制表型的优良底盘细胞奠定了基础.为促进基于细胞疗法的人类疾病治疗,哺乳动物细胞作为底盘细胞也正在开发中.本文对合成生物学使能技术的最新发展进行了深入总结和梳理,探讨了这些使能技术在合成生物学乃至整个生命科学研究中的应用及其重要意义.  相似文献   

18.
组学分析技术的发展推动生物学逐渐成为一门以数据分析为中心的科学。依托生物数据在细胞整体系统水平建立数字细胞模型,对于理解细胞系统组织原理和生命产生进化规律,预测各种环境和基因扰动对细胞功能的影响并指导设计人工生命具有重要意义,因此数字细胞的构建模拟设计已成为合成生物学的核心研究内容与底层支撑技术。本文重点对天津工业生物技术研究所创立十年来在数字细胞研究方面的进展进行回顾介绍,重点包括基因组尺度代谢网络模型的构建、质控以及其在途径设计和指导菌种代谢工程改造方面的应用,进一步结合近年来细胞模型研究的前沿趋势,对整合多种约束的模型的构建和分析研究方面的最新成果进行了介绍,最后对数字细胞研究的未来发展方向进行展望。数字细胞技术将与基因组测序、合成和编辑等合成生物学前沿技术一起提升人们对生命进行读写改创的能力。  相似文献   

19.
生物体通过指导的自组装合成种类繁多、功能特异的天然纳米结构,它们在生命过程中扮演重要角色。按照自组装体的维度,可以分为线状(一维)、层状(二维)、笼状(三维)生物纳米结构。通过设计,这些生物大分子纳米结构可在细胞"工厂"中重组制备,且可通过合成生物学技术对其组装和功能化进行理性设计和调控,成为功能性纳米器件。这类纳米生物结构和器件已经在生物传感、催化、肿瘤热疗、药物递送、组织工程、生物电池等领域获得展示或应用。相关研究正在成为合成生物学和纳米生物学的一个交叉领域,受到关注。  相似文献   

20.
合成生物学是生物学与工程学结合的新兴学科,通过人工将生物元器件组合成线路引入细胞,使细胞获得对信息进行处理并做特定输出的新功能。近年来,针对疾病治疗的合成生物学研究发展迅猛,基因线路的工程化特性使通过它对疾病进行更精确、灵活的干预成为可能,在基因治疗中有广泛的应用前景。精确干预的前提是综合多种输入信号并识别出特定种类的细胞,如特异性识别出癌细胞的溶瘤病毒。疾病的发生往往伴随着细胞内多种调控网络的改变,从中提取出关键信号分子作为基因线路的输入至关重要。现综述哺乳动物细胞中对不同的信号输入进行感知的基因线路细胞分类器,为未来模块化整合信号输入、设计基因线路提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号