首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Understanding how climate change impacts species and ecosystems is integral to conservation. When studying impacts of climate change, warming temperatures are a research focus, with much less attention given to extreme weather events and their impacts. Here, we show how localized, extreme rainfall events can have a major impact on a species that is endangered in many parts of its range. We report incubation temperatures from the world's largest green sea turtle rookery, during a breeding season when two extreme rainfall events occurred. Rainfall caused nest temperatures to drop suddenly and the maximum drop in temperature for each rain‐induced cooling averaged 3.6°C (n = 79 nests, min = 1.0°C, max = 7.4°C). Since green sea turtles have temperature‐dependent sex determination, with low incubation temperatures producing males, such major rainfall events may have a masculinization effect on primary sex ratios. Therefore, in some cases, extreme rainfall events may provide a “get‐out‐of‐jail‐free card” to avoid complete feminization of turtle populations as climate warming continues.  相似文献   

2.
Future climate scenarios predict simultaneous changes in environmental conditions, but the impacts of multiple climate change drivers on ecosystem structure and function remain unclear. We used a novel experimental approach to examine the responses of an upland grassland ecosystem to the 2080 climate scenario predicted for the study area (3.5°C temperature increase, 20% reduction in summer precipitation, atmospheric CO2 levels of 600 ppm) over three growing seasons. We also assessed whether patterns of grassland response to a combination of climate change treatments could be forecast by ecosystem responses to single climate change drivers. Effects of climate change on aboveground production showed considerable seasonal and interannual variation; April biomass increased in response to both warming and the simultaneous application of warming, summer drought, and CO2 enrichment, whereas October biomass responses were either non-significant or negative depending on the year. Negative impacts of summer drought on production were only observed in combination with a below-average rainfall regime, and showed lagged effects on spring biomass. Elevated CO2 had no significant effect on aboveground biomass during this study. Both warming and the 2080 climate change scenario were associated with a significant advance in flowering time for the dominant grass species studied. However, flowering phenology showed no significant response to either summer drought or elevated CO2. Species diversity and equitability showed no response to climate change treatments throughout this study. Overall, our data suggest that single-factor warming experiments may provide valuable information for projections of future ecosystem changes in cool temperate grasslands.  相似文献   

3.
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open‐top chambers supplied three levels of warming (+0, +2, and +4 °C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17° to 34° were observed. Across species, acclimation potentials varied from 0.55 °C to 1.07 °C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.  相似文献   

4.
Understanding how climate change and other environmental stressors will affect species is a fundamental concern of modern ecology. Indeed, numerous studies have documented how climate stressors affect species distributions and population persistence. However, relatively few studies have investigated how multiple climate stressors might affect species. In this study, we investigate the impacts of how two climate change factors affect an important foundation species. Specifically, we tested how ocean acidification from dissolution of CO2 and increased sea surface temperatures affect multiple characteristics of juvenile eastern oysters (Crassostrea virginica). We found strong impacts of each stressor, but no interaction between the two. Simulated warming to mimic heat stressed summers reduced oyster growth, survival, and filtration rates. Additionally, we found that CO2‐induced acidification reduced strength of oyster shells, which could potentially facilitate crab predation. As past studies have detected few impacts of these stressors on adult oysters, these results indicate that early life stages of calcareous marine organisms may be more susceptible to effects of ocean acidification and global warming. Overall, these data show that predicted changes in temperature and CO2 can differentially influence direct effects on individual species, which could have important implications for the nature of their trophic interactions.  相似文献   

5.
As Earth's atmosphere accumulates carbon dioxide (CO2) and other greenhouse gases, Earth's climate is expected to warm and precipitation patterns will likely change. The manner in which terrestrial ecosystems respond to climatic changes will in turn affect the rate of climate change. Here we describe responses of an old‐field herbaceous community to a factorial combination of four levels of warming (up to 4 °C) and three precipitation regimes (drought, ambient and rain addition) over 2 years. Warming suppressed total production, shoot production, and species richness, but only in the drought treatment. Root production did not respond to warming, but drought stimulated the growth of deeper (> 10 cm) roots by 121% in 1 year. Warming and precipitation treatments both affected functional group composition, with C4 grasses and other annual and biennial species entering the C3 perennial‐dominated community in ambient rainfall and rain addition treatments as well as in warmed treatments. Our results suggest that, in this mesic system, expected changes in temperature or large changes in precipitation alone can alter functional composition, but they have little effect on total herbaceous plant growth. However, drought limits the capacity of the entire system to withstand warming. The relative insensitivity of our study system to climate suggests that the herbaceous component of old‐field communities will not dramatically increase production in response to warming or precipitation change, and so it is unlikely to provide either substantial increases in forage production or a meaningful negative feedback to climate change later this century.  相似文献   

6.
Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate‐related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater‐dependent ecosystems (GDEs) remains poorly known. Here we report long‐term water temperature trends in 66 northern European cold‐water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968–2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high‐emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst‐case scenario, water temperature of these originally cold‐water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring‐fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold‐stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring‐fed streams. Climate change‐induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.  相似文献   

7.
Broadacre livestock production is a major but highly diverse component of agriculture in Australia that will be significantly exposed to predicted changes in climate over coming decades. We used the GRAZPLAN simulation models to assess the impacts of climate change under the SRES A2 scenario across southern Australia. Climate change impacts were examined across space (25 representative locations) and time (1970–99, 2030, 2050 and 2070 climate) for each of five livestock enterprises. Climate projection uncertainty was considered by analysing projections from four global circulation models (GCMs). Livestock production scenarios were compared at their profit‐maximizing stocking rate, constrained to ensure that risks of soil erosion were acceptable. Impacts on net primary productivity (ANPP) varied widely between GCM projections; the average declines from historical climate were 9% in 2030, 7% in 2050 and 14% in 2070. Declines in ANPP were larger at lower‐rainfall locations. Sensitivity of ANPP to changes in rainfall ranged from 0.4 to 1.7, to temperature increase from ?0.15 to +0.07 °C?1 and to CO2 increase from 0.11 to 0.32. At most locations the dry summer period lengthened, exacerbating the greater erosion risk due to lower ANPP. Transpiration efficiency of pastures increased by 6–25%, but the proportion of ANPP that could safely be consumed by livestock fell sharply so that operating profit (at constant prices) fell by an average of 27% in 2030, 32% in 2050 and 48% in 2070. This amplification of ANPP reductions into larger profitability declines is likely to generalize to other extensive livestock systems. Profit declines were most marked at drier locations, with operating losses expected at 9 of the 25 locations by 2070. Differences between livestock enterprises were smaller than differences between locations and dates. Future research into climate change impacts on Australian livestock production needs to emphasise the dry margin of the cereal‐livestock zone.  相似文献   

8.
Temperate species are projected to experience the greatest temperature increases across a range of modelled climate change scenarios, and climate warming has been linked to geographical range and population changes of individual species at such latitudes. However, beyond the multiple modelling approaches, we lack empirical evidence of contemporary climate change impacts on populations in broad taxonomic groups and at continental scales. Identifying reliable predictors of species resilience or susceptibility to climate warming is of critical importance in assessing potential risks to species, ecosystems and ecosystem services. Here we analysed long‐term trends of 110 common breeding birds across Europe (20 countries), to identify climate niche characteristics, adjusted to other environmental and life history traits, that predict large‐scale population changes accounting for phylogenetic relatedness among species. Beyond the now well‐documented decline of farmland specialists, we found that species with the lowest thermal maxima (as the mean spring and summer temperature of the hottest part of the breeding distribution in Europe) showed the sharpest declines between 1980 and 2005. Thermal maximum predicted the recent trends independently of other potential predictors. This study emphasizes the need to account for both land‐use and climate changes to assess the fate of species. Moreover, we highlight that thermal maximum appears as a reliable and simple predictor of the long‐term trends of such endothermic species facing climate change.  相似文献   

9.
Although plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below ?8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.  相似文献   

10.
Co‐occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near‐future projected change (+2–4 °C, ?0.3–0.5 pH units; pCO2 400–1820; ΩCa 5.0–1.6; ΩAr 3.3–1.1), and extreme conditions experienced at low tide (+4 °C, ?0.3–0.7 pH units; pCO2 2850–2967; ΩCa 1.1–1.0; ΩAr 0.7–0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near‐future warming and acidification. Spine development, however, was negatively affected by near‐future increased temperature (+2–4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near‐future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature‐pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits.  相似文献   

11.
Aim Bees are the most important pollinators of flowering plants and essential ecological keystone species contributing to the integrity of most terrestrial ecosystems. Here, we examine the potential impact of climate change on bees’ geographic range in a global biodiversity hotspot. Location South Africa with a focus on the Cape Floristic Region (CFR) diversity hotspot. Methods  Geographic ranges of 12 South African bee species representing dominant distribution types were studied, and the climate change impacts upon bees were examined with A2 and B2 climate scenarios of HadCM3 model, using MaxEnt for species distribution modelling. Results The predicted levels of climate change‐induced impacts on species ranges varied from little shifts and range expansion of 5–50% for two species to substantial range contractions between 32% and 99% in another six species. Four species show considerable range shifts. Bees of the winter rainfall area in the west of South Africa generally have smaller range sizes than in the summer rainfall area and generally show eastward range contractions toward the dry interior. Bee species prevalent in summer rainfall regions show a tendency for a south‐easterly shift in geographic range. Main conclusions The bee fauna of the CFR is identified as the most vulnerable to climate change due to the high level of endemism, the small range sizes and the island‐like isolation of the Mediterranean‐type climate region at the SW tip of Africa. For monitoring climate change impact on bees, we suggest to establish observatories in the coastal plains of the west coast that are predicted to be worst affected and areas where persistence of populations is most likely. Likely impacts of climate change on life history traits of bees (phenology, sociality, bee‐host plant synchronization) are discussed but require further investigation.  相似文献   

12.
Projected temperature increases under global warming could benefit southern tree species by providing them the optimal growing temperature and could be detrimental to northern species by exposing them to the supra optimal growing temperatures. This benefit-detriment trade-off could increase the competitive advantage of southern species in the northern species range and cause the increase or even dominance of southern species in the northern domain. However, the optimum temperature for photosynthesis of C3 plants may increase due to CO2 enrichment. An increase in the optimum temperature could greatly reduce the benefit-detriment effect. In this study, we coupled a forest ecosystem process model (PnET-II) and a forest GAP model (LINKAGES) with a spatially dynamic forest landscape model (LANDIS-II) to study how an optimum temperature increase could affect forest landscape response due to global warming. We simulated 360 years of forest landscape change in the Boundary Water Canoe Area (BWCA) in northern Minnesota, which is transitional between boreal and temperate forest. Our results showed that, under the control scenario of continuing the historic 1984–1993 mean climate (mainly temperature, precipitation and CO2), the BWCA will become a spruce-fir dominated boreal forest. However, under the scenario of predicted climatic change [the 2000–2099 climates are predicted by Canadian Climate Center (CCC), followed by 200 years of continuing the predicted 2090–2099 mean climate], the BWCA will become a pine-dominated mixed forest. If the optimum temperature increases gradually with [CO2] (the increase in optimum temperature is assumed to change gradually from 0 °C in year 2000 to 5 °C in year 2099 when [CO2] reaches 711 ppm and stabilizes at 5 °C after year 2099), the BWCA would remain a fir-dominated boreal forest in areas with relatively high water-holding capacity, but not in areas with relatively low water-holding capacity. Our results suggest that the [CO2] induced increases in optimum temperature could substantially reduce forest landscape change caused by global warming. However, not all tree species would be able to successfully adapt to future warming as predicted by CCC, regardless of optimum temperature acclimations.  相似文献   

13.
Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of ‘generations’ based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new ‘generation’ of climate change experiments using down‐scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments.  相似文献   

14.
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   

15.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.  相似文献   

16.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   

17.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

18.
Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high‐TE cultivar (cv. Drysdale) over its almost identical low‐TE parent line (Hartog), from about ?7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221–1,351 mm annual rainfall), under the present‐day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost‐benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5‐year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO2 raises this nation‐wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%.  相似文献   

19.
Endemic species and ecosystem sensitivity to climate change in Namibia   总被引:1,自引:0,他引:1  
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.  相似文献   

20.
Mountain forests are at particular risk of climate change impacts due to their temperature limitation and high exposure to warming. At the same time, their complex topography may help to buffer the effects of climate change and create climate refugia. Whether climate change can lead to critical transitions of mountain forest ecosystems and whether such transitions are reversible remain incompletely understood. We investigated the resilience of forest composition and size structure to climate change, focusing on a mountain forest landscape in the Eastern Alps. Using the individual‐based forest landscape model iLand, we simulated ecosystem responses to a wide range of climatic changes (up to a 6°C increase in mean annual temperature and a 30% reduction in mean annual precipitation), testing for tipping points in vegetation size structure and composition under different topography scenarios. We found that at warming levels above +2°C a threshold was crossed, with the system tipping into an alternative state. The system shifted from a conifer‐dominated landscape characterized by large trees to a landscape dominated by smaller, predominantly broadleaved trees. Topographic complexity moderated climate change impacts, smoothing and delaying the transitions between alternative vegetation states. We subsequently reversed the simulated climate forcing to assess the ability of the landscape to recover from climate change impacts. The forest landscape showed hysteresis, particularly in scenarios with lower precipitation. At the same mean annual temperature, equilibrium vegetation size structure and species composition differed between warming and cooling trajectories. Here we show that even moderate warming corresponding to current policy targets could result in critical transitions of forest ecosystems and highlight the importance of topographic complexity as a buffering agent. Furthermore, our results show that overshooting ambitious climate mitigation targets could be dangerous, as ecological impacts can be irreversible at millennial time scales once a tipping point has been crossed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号