首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唾液酸苷酶(EC.3.2.1.18)是一类重要的糖苷水解酶,在动物和微生物中广泛存在.该类酶催化寡糖或糖缀合物上非还原末端唾液酸水解,具有重要的生物学功能,如参与溶酶体降解代谢物、癌症发生、微生物致病等多种生理和病理过程.除了水解活性外,有的唾液酸苷酶还具有转糖基活性,能够以唾液酸单糖或糖苷为糖基供体,催化唾液酸转移到受体分子上,一步合成寡糖和糖苷化合物.这种合成活性对于唾液酸相关糖链的大量获得具有重要意义,有利于推动该类寡糖的基础研究及其在食品和医药中的应用.本文综述了唾液酸苷酶的结构和催化机理、生理功能、转糖基作用及其在寡糖合成中的应用.  相似文献   

2.
透明质酸(HA)广泛应用于医学、化妆品、食品等领域。HA的生物活性取决于其分子量(M_w)。透明质酸寡糖由于具有重要的生理活性与特殊生理功能,在医药领域具有重要的应用前景。兽疫链球菌因其发酵周期短、生产强度较强的特点,在商业生产HA上具有广泛的应用。为了高效发酵合成透明质酸寡糖和解决发酵过程的溶氧问题,文中通过在兽疫链球菌WSH-24中过表达透明质酸合酶HasA以及优化表达水蛭来源的透明质酸酶LHAase。重组菌株摇瓶发酵24h,透明质酸寡糖积累至0.97g/L,比野生菌提高了182.0%。在3L发酵罐中发酵24 h,透明质酸寡糖生产强度为294.2 mg/(L·h),HA积累至7.06 g/L,比野生菌的罐上水平提高了112.4%。文中所构建的发酵合成透明质酸寡糖的兽疫链球菌重组菌株具有重要的应用前景。  相似文献   

3.
ω-转氨酶不对称合成手性胺及非天然氨基酸是目前生物加工过程的研究热点之一。ω-转氨酶具有优良的立体选择性及区域选择性,利用其进行生物催化生产手性胺,已被应用于医药、农药和化工等领域。本文中,笔者综述了ω-转氨酶的基本结构特性,并以转氨酶法制备西他列汀关键中间体等为例,同时阐述了该酶的高通量筛选方法及分子改造方面的研究进展,并对级联反应提高手性胺产量的策略作了进一步讨论。最后,本文简要总结了ω-转氨酶在不对称合成非天然氨基酸中的具体应用。  相似文献   

4.
合成生物催化以多酶催化为特征,通过灵活选择不同功能的酶和反应路线设计,可以实现复杂生物基化学品的合成,在反应效率、原子经济性和环境友好方面有着不可替代性。但是其还存在两个关键科学问题:(1)氧化还原酶催化过程中辅酶的循环再生和重复利用;(2)酶在非水相和油水两相反应体系中如何实现稳定。以CO_2合成生物甲醇和天然油脂制备生物聚氨酯材料这两个具有代表性的多酶催化过程为例,介绍了合成生物催化关键科学问题的研究进展。其中,新型纳米材料与生物技术相结合在解决催化体系中辅酶再生、多酶协同以及酶的界面稳定方面有着广阔的发展前景。  相似文献   

5.
利用多酶级联催化反应合成精细化学品是近年来生物催化领域的研究热点。通过构建体外多酶级联体系,可以替代传统的化学合成法,实现多种双官能团功能化学品的绿色合成。本文系统介绍了多酶级联催化反应中不同级联方式的特点及其构建策略,总结了级联反应中元件酶常用的筛选方法、NAD(P)H和ATP等辅酶的再生策略及其在多酶级联反应中的应用,并且阐述了多酶级联催化反应体系在6种双官能团功能化学品,包括ω-氨基脂肪酸、烷基内酰胺、α,ω-二元羧酸、α,ω-二胺、α,ω-二醇、ω-氨基醇合成中的应用。  相似文献   

6.
壳寡糖的制备及其在医学和农业生产中的应用   总被引:1,自引:0,他引:1  
壳寡糖为一种由2~10个氨基葡萄糖经β-1,4糖苷键连接而成的寡糖聚合物,可通过化学水解或酶降解几丁质或壳聚糖获得,在医学及农业生产等各个领域具有广泛的研究和应用价值。壳寡糖天然无毒,分子量相对较低,水溶性好,易于吸收,且具有良好的生物相容性。此外,壳寡糖也表现出了良好的生物学活性,包括抗肿瘤、抗炎、免疫调节、抗菌、改善糖脂代谢紊乱、保护神经损伤等。对壳寡糖的制备和表征、生物学功能及应用进展进行了综述,并对壳寡糖产业目前存在的问题及未来的研究方向进行了讨论,以期为壳寡糖的深度开发提供依据。  相似文献   

7.
寡糖是多糖经过降解后得到的小分子活性物质,具有抗氧化、抗肿瘤、抗病毒和免疫调节等多种生物活性,是功能食品开发领域研究的热点。目前,寡糖的分离和制备主要采用离子交换色谱、凝胶渗透色谱以及两者联用的方法,分离时间长、制备成本高,难以实现寡糖的规模化分离和制备。膜分离技术(membrane separation technology,MST)是一种利用膜的选择性渗透作用,实现两组分或者多组分分离的技术,具有操作简单、分离效果好、高效节能等优点,特别是能够直接放大应用于规模化的分离工程,因此在寡糖等小分子的分离和制备等方面具有巨大的应用潜力。系统总结了膜分离技术在寡糖分离与制备领域的最新进展,综述了用于分离和制备寡糖的膜分离技术分类、分离工艺及其应用现状,并对目前膜分离技术用于大规模分离和制备寡糖过程中面临的挑战进行了讨论。  相似文献   

8.
利用重组大肠杆菌进行寡糖合成的研究进展   总被引:1,自引:1,他引:0  
随着更多寡糖生物学活性的阐明,寡糖合成研究已成为糖生物学研究的热点之一,其中,以重组大肠杆菌作为酶盒或生物反应器,利用Leloir途径合成寡糖的方法,是近年来发展起来的一类重要的寡糖生物合成技术,并取得了较多的进展。将从细菌糖基转移酶的表达和鉴定、糖核苷酸的供给和寡糖的合成途径等几个方面,关注利用细菌功能尤其是利用重组大肠杆菌合成寡糖的研究进展,并分析各技术手段的优缺点及其应用前景。  相似文献   

9.
目的:双功能褐藻胶裂解酶既能降解聚β-D-甘露糖醛酸,又能降解聚α-L-古罗糖醛酸,可以用一种酶来制备不同结构的褐藻胶寡糖。本文的目的是筛选能产生双功能褐藻胶裂解酶的菌株,对其产酶曲线和降解产物作初步研究。方法:利用唯一碳源培养基筛选产生褐藻胶裂解酶的菌株,通过16SrDNA序列比对进行菌种鉴定,通过在凝胶上检测褐藻胶裂解酶活性来判断发酵上清液中褐藻胶裂解酶的数量及分子量,利用薄层层析确定降解褐藻胶的终产物组成。结果:从褐藻上筛选到一株海洋细菌QY107,鉴定为弧菌属细菌。发酵120h时褐藻胶裂解酶产量为12.32U/mL,其发酵液上清中只含有一种褐藻胶裂解酶,分子量在28kDa左右,并且对聚β—D-甘露糖醛酸和聚α-L-古罗糖醛酸都能降解,降解褐藻胶的终产物主要为三糖。结论:本文筛选到一株弧菌QY107,其发酵液上清中只有一种双功能褐藻胶裂解酶,可用于大量制备褐藻胶三糖。推测该酶具有特殊的催化腔结构,对其结构与功能相互关系的研究可能会发现新的底物结合与催化机制。酶解制备褐藻胶寡糖因其环保高效而越来越受到人们的重视,因此该菌株能促进海洋寡糖类生物制品的开发,在医药、食品、农业、生物燃料等领域具有广阔的应用前景。  相似文献   

10.
木聚糖酶在半纤维素转化成工业产品过程中发挥着重要作用,尤其是在食品和化工行业中。本文对木聚糖酶的分类及基本性质,酶的制备生产,酶分子改造方面的研究进展、趋势进行了总结。主要介绍了木聚糖酶的一般适用环境,天然菌株及基因资源的发掘情况,包括基于理论研究及应用需求进行酶蛋白改造的通用方法及进展。另外,对木聚糖酶在食品行业中的应用,如功能性寡糖的制备及其在烘焙食品、果汁和酿酒等方面的应用均进行了论述。关于木聚糖酶的研究将会在新资源发掘,关键酶催化性质尤其是在较复杂催化环境影响因素的确认,以及工业适用性方面进行更多的探讨和拓展。  相似文献   

11.
生物印迹技术是一个简单、直接的酶修饰技术,已应用到有机合成、生物传感器制备和生物分离等领域,在推动化学品绿色合成方面具有潜在的应用价值。本文在生物印迹概念的提出与发展、分类、应用以及印迹技术策略的发展等方面综述近期研究成果,针对生物印迹研究过程的现实问题,展望其未来的发展趋势,为生物印迹相关研究提供有益的借鉴。  相似文献   

12.
在蛋白质工程、绿色生物制造以及合成生物学等研究领域中,对重要催化反应的重塑和合成路径的优化搭建,都依赖于对相关蛋白质结构与功能的深入了解。合成生物技术近年来的飞速发展对关键菌种及生物催化过程中的蛋白质的性能提出了更高要求,相关研究的关键是获得大批量、高纯度目的蛋白,并进行快速、准确的构效关系研究。中国科学院天津工业生物技术研究所建所10年来,在工业蛋白质领域进行了多年的积累,成功搭建成了蛋白质结构生物学平台;并在植物天然产物合成相关萜类合成酶、白色污染降解的聚对苯二甲酸乙二酯(polyethylene terephthalate, PET)塑料降解酶以及生物质转化利用相关酶等方面获得了一些进展,通过对这些蛋白进行结构和功能的研究,为许多研究工作提供了理论依据。蛋白质结构功能研究相关技术的不断发展,将加速合成生物学的学术和工业应用研究,推动我国生物制造领域的科技创新升级。  相似文献   

13.
功能性低聚糖是一类重要的益生元,具有许多重要的生理功能,近年来受到研究人员和广大消费者的广泛关注。功能性低聚糖的制备方法主要有化学法、酶法和物理法,其中酶法制备是绿色、高效和最具发展和应用潜力的方法。本文针对不同类型功能性低聚糖的酶法制备过程差异,系统介绍了近年来国内外在低聚木糖、几丁寡糖、琼脂寡糖、低聚半乳糖和甘露寡糖等5类典型功能性低聚糖糖酶法制备方面所取得的研究进展;也总结介绍了不同类型功能性低聚糖的原料来源、结构差异以及健康功能活性等;最后对功能性低聚糖领域的基础研究的发展趋势进行了预测和展望,以期为我国功能性低聚糖的研究和实际生产应用提供参考。  相似文献   

14.
手性环氧氯丙烷是一种重要的三碳手性合成子,在医药、农药、化工、材料等领域有着广泛的应用。开发以甘油替代石油基原料合成手性环氧氯丙烷的绿色合成工艺具有重要的开发价值。生物催化技术可有效提高过程安全性与原子经济性,降低"三废"排放,提升产品质量。阐述了生物催化合成手性环氧氯丙烷关键酶技术的研究进展,进行了生物合成路线设计、卤化酶酶库构建、卤醇脱卤酶与环氧化物水解酶的筛选与改造、卤醇脱卤酶/环氧化物水解酶双酶串联合成手性环氧氯丙烷工艺构建等技术开发,为手性环氧氯丙烷绿色生物合成技术的研究与应用提供理论基础与技术支持。  相似文献   

15.
褐藻寡糖有着丰富的生物学功能,酶法制备功能性褐藻寡糖具有重要实践应用价值.为发掘高活性及稳定性的褐藻寡糖制备酶,对浅海热液嗜热菌Yeosuana marina sp.JLT21中的海藻酸裂解酶YMA-1的基因在大肠杆菌中进行表达、纯化及酶活鉴定.结果发现YMA-1由306个氨基酸残基构成,是多糖裂解酶家族7(PL7)新...  相似文献   

16.
陈国强 《生物工程学报》2013,29(8):1041-1043
合成生物学目前在全球得到迅猛发展。在此专刊中,综述了一些相关技术在合成生物学领域的进展,其中有:链霉菌无痕敲除方法、基因合成技术、DNA组装新方法、最小化基因组的方法及分析、合成生物系统的组合优化。也讨论了应用合成生物学策略优化光合蓝细菌底盘、产溶剂梭菌分子遗传操作技术、蛋白质预算(Protein budget)作为合成生物学的成本标尺。最后,用几个例子说明了合成生物学的应用,包括复杂天然产物合成人工生物系统的设计与构建、微生物木糖代谢途径改造制备生物基化学品以及构建酿酒酵母工程菌合成香紫苏醇。  相似文献   

17.
光学纯的手性胺是一类重要的手性砌块,广泛应用于药物、天然产物、精细化学品等化合物的合成中。手性胺的酶促合成方法因立体选择性高、反应条件温和、反应过程绿色等优点,引起了学术界与工业界的广泛关注。近年来,一类新颖的胺脱氢酶被报道,其能够利用廉价氨作为氨基供体,催化酮的不对称还原胺化,成为一种有潜力的手性胺合成生物催化剂。在胺脱氢酶的发现、分子改造、底物谱拓展、过程强化、多酶级联构建等方面已取得了显著的进展。本文中,笔者对该类酶取得的研究进展进行总结,并预测其未来的研究趋势和应用中面临的机遇与挑战。  相似文献   

18.
吡咯喹啉醌研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(PQQ)是继烟酰胺和黄素核苷酸之后发现的氧化还原酶的第3种辅酶,具有多种生理功能,在食品、医药及农业等行业有广泛的应用前景。我们简要综述了PQQ参与醌酶电子传递、增强微生物对极端环境的适应能力、促进植物生长、刺激神经生长因子生成等生物学功能及相关作用机制,介绍了PQQ生产菌、PQQ合成基因及PQQ生物合成的调控等方面的研究进展。  相似文献   

19.
透明质酸酶是能降解透明质酸及部分糖胺聚糖的一类糖苷酶,可应用于医疗和美容等领域。透明质酸酶也可用于制备小分子糖胺寡糖,许多研究发现小分子糖胺寡糖具有比大分子糖胺聚糖更高的生物免疫活性。为便于研究人员对透明质酸酶进行进一步的基础研究及应用研究,本文介绍了透明质酸和透明质酸酶,梳理了透明质酸酶的分类、结构和催化机理,归纳总结了透明质酸酶的酶活力测定方法、重组表达、酶学性质和应用,展望了透明质酸酶的研究方向。  相似文献   

20.
植物肌醇半乳糖苷合酶(galactinol synthase, GolS)是高等植物棉子糖类寡糖合成途径中的关键酶,为棉子糖系列寡糖提供活化的半乳糖基,调控植物体内棉子糖(raffinose, RFO)系列寡糖的生物合成与积累。编码该酶的基因属于糖基转移酶(glycosyltransferases, GTs)GT8基因家族的亚家族。GolS参与合成的最终产物棉子糖家族低聚糖(raffinose family oligosaccharides,RFOs)是植物中重要的碳水化合物存在形式,在细胞内可溶性强,可作为脱水保护剂;还能发挥稳定膜结构的作用。同时,GolS催化合成的直接产物肌醇半乳糖苷(galactinol)和RFOs都能作为羟基自由基捕获分子参与活性氧的清除。因此,GolS参与的代谢途径在植物碳同化物的贮存与运输、生物和非生物逆境响应、种子的脱水效应等生命过程中均发挥了重要作用。GolS基因结构差异与表达模式不同,导致不同GolS基因参与的生物学功能具有很大的差异。研究植物中不同GolS基因的结构特征,组织特异性表达特性及它们响应不同生长发育阶段、环境变化的表达特性,对了解GolS参与的生物学功能具有重要意义。同时,在分子生物学水平上,深入了解调控植物GolS基因的分子调控机制,为通过遗传工程或分子辅助育种等手段,利用GolS改良农林作物的经济性状提供理论支持。本文针对近年来植物中GolS基因的生理功能和调控机制的研究进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号