首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2000—2018年西北砒砂岩区植被覆盖度与地形效应   总被引:1,自引:0,他引:1  
王瑞杰  闫峰 《应用生态学报》2020,31(4):1194-1202
利用2000—2018年的MODIS-EVI数据,基于像元二分模型计算植被覆盖度,利用数字高程模型(DEM)数据从高程、坡度和坡向等方面分析西北砒砂岩区植被覆盖度的地形效应。结果表明: 2000—2018年西北砒砂岩区植被覆盖度(FVC)相对较低,平均按2.43·a-1的速率递增,FVC正距平年主要有12年,其中以2018年和2013年相对最高,负距平年主要有7年,其中以2001年和2000年相对最低。砒砂岩区FVC空间分布由东南向西北逐渐降低,但不同类型砒砂岩区FVC存在较大差异,其中裸露砒砂岩区FVC相对最低,覆沙砒砂岩区次之,覆土砒砂岩区相对最高;2000—2018年砒砂岩区FVC的平均变化率为0.0031,植被生长状况趋于改善。高程-坡向效应表明,裸露砒砂岩和覆沙砒砂岩区坡向分别在高程≤1000 m和>1500 m处对FVC的影响较大,覆土砒砂岩区坡向对FVC的影响较小,但在高程1200~1300 m处影响较大。坡度-坡向效应表明,砒砂岩在坡度≤15°时,FVC的坡度坡向效应不明显,坡度>25°时裸露砒砂岩和覆沙砒砂岩的阴坡和半阴坡FVC大于阳坡和半阳坡;覆土砒砂岩坡度>15°时,半阴坡和半阳坡的FVC大于阴坡和阳坡。  相似文献   

2.
植被覆盖度是衡量地表植被状况和指示生态环境变化的一个重要指标。基于像元二分模型,利用Landsat5/8遥感影像和DEM数据,对岷江汶川-都江堰段植被覆盖动态变化进行了监测,并结合高程、坡度和坡向数据,分析了汶川地震前后植被受损与恢复的空间动态格局变化。研究表明:植被覆盖总体良好,大部分区域的植被覆盖度均在中、高度以上,空间格局上呈现由汶川县东部、都江堰市西北部的龙门山区向两侧减少的总体趋势;地震造成植被受损面积达63808.7 hm~2,且集中分布于海拔567—4331 m、坡度26—51°的范围以及东坡、北坡、南坡和西坡;震后5a,植被恢复面积17786.47 hm~2,主要分布在海拔576—2180 m与3256—3793 m、坡度小于9°和26—51°以及东坡、东南坡和和南坡;高程和坡度对植被损毁与恢复的影响明显高于坡向。  相似文献   

3.
植被覆盖度对FAST电磁波宁静区的生态系统环境变化有着重要指示作用, 研究选取2008年、2013年和2018年3个时期的Landsat TM/OLI影像, 获取FAST电磁波宁静区的植被覆盖度数据, 并探讨其与海拔、坡度、坡向等因子的时空变化关系。结果表明: (1)近10年来, 植被覆盖度整体呈增加的趋势, 且森林覆盖增加速率远高于退化速率; (2)根据IR-MAD变化检测来看, 植被覆盖变化较剧烈的区域沿道路和居民区分布, 此时受人类活动的影响较大; (3)地形因子不同程度地影响着植被覆盖度的变化, 中低山的植被覆盖度较高, 坡度较缓区域植被覆盖度占比大, 阳坡的植被覆盖度高于阴坡, 平地稀少植被覆盖可忽略不计。研究结果可为FAST电磁波宁静区生态环境保护提供参考价值。  相似文献   

4.
2000-2016年秦岭山地植被覆盖变化地形分异效应   总被引:5,自引:0,他引:5  
赵婷  白红英  邓晨晖  孟清  郭少壮  齐贵增 《生态学报》2019,39(12):4499-4509
利用2000-2016年MODIS NDVI数据,采用趋势分析及地形差异修正法,探讨秦岭山地植被覆盖变化在南北坡、不同海拔以及不同坡度坡向下的空间分异性。结果表明:近17年来,秦岭山地植被覆盖度良好,整体呈上升趋势,南北坡、不同海拔、不同坡度、不同坡向下植被覆盖度有所差异,植被变化趋势也不同。(1)就南北坡而言,近17年来秦岭南坡植被覆盖度上升趋势大于北坡,南坡植被覆盖以上升趋势为主,而北坡以稳定为主。(2)不同的海拔高度上秦岭山地植被覆盖变化在存在分异性:低海拔区域呈减少趋势,中海拔区呈明显的上升趋势,2000 m以上的高海拔区域北坡的植被覆盖度较为稳定,而南坡的2500到3100 m区域内有较明显的减小趋势。(3)从坡度来看,随着坡度的增加秦岭山地植被覆盖度由减少转为增加再转为稳定,南北坡植被变化分异性不明显。(4)不同坡向上,秦岭南北坡植被覆盖度变化差异明显,由阴坡转为阳坡时,北坡植被覆盖有明显的增长趋势,而南坡则不明显,植被覆盖度减小区在南北坡的分布呈相反趋势,分别分布在南坡的阳坡以及北坡的阴坡。  相似文献   

5.
桂西北喀斯特区域植被变化趋势及其对气候和地形的响应   总被引:7,自引:0,他引:7  
基于1999—2010年的SPOT NDVI数据,分析了河池市植被变化趋势及空间差异,并结合气象和地形数据分析了植被与气候、地形的关系。结果表明:(1)桂西北喀斯特地区植被变化总体上呈恢复趋势,年均气候因子对植被变化的作用不明显;(2)200—500m的海拔范围内植被恢复显著,但400—500m的海拔范围内有小面积植被退化现象,随着海拔增加,植被变化趋于稳定;(3)6—15°的坡度范围内植被恢复最显著,而2—6°及大于25°坡度范围存在植被退化的现象;(4)不同坡向上的植被恢复差异不明显,但随着坡向由阴坡转阳坡,植被总体恢复呈减小趋势。喀斯特地区人类生态建设取得一定成效,但由于人类活动的负面影响,在海拔400—500m、坡度大于25°的阳坡区域仍存在植被减少的现象。  相似文献   

6.
沁河流域植被覆盖时空分异特征   总被引:1,自引:0,他引:1  
以4期Landsat TM/OLI为遥感数据源,采用像元二分模型估算植被覆盖度,运用转移矩阵、地学信息图谱和重心迁移模型分析1993—2016年沁河流域植被覆盖的时空演变特征;并结合地形数据分析海拔、坡度和坡向上植被覆盖度的空间响应规律。结果表明:沁河流域植被覆盖度呈北高南低的空间分布特征,且高等级覆盖的植被主要由低等级覆盖的植被转化而来; 1993—2016年,沁河流域植被覆盖度呈不显著波动上升趋势,显著改善(55.99%)和轻微改善(10.13%)之和远大于显著退化(7.31%)和轻微退化(4.59%)之和,反映了良好的植被状况;沁河流域植被覆盖度重心整体表现为向南偏东迁移2.05 km,其中较高和高植被覆盖迁移最为明显;沁河流域植被覆盖度与海拔、坡度呈显著正相关,显著改善面积占比随高程、坡度的增加呈先增加后减小趋势,坡向在东北、西北和西南方向为优势地形位。研究结果有助于为该流域水土流失治理和生态环境的恢复提供决策依据。  相似文献   

7.
利用1973、1988和2006年3期遥感数据,以归一化植被指数像元二分法为植被覆盖度估算模型计算连江流域不同时期的植被覆盖度,然后运用DEM地形高程数据及回归分析法和相关分析法,分析海拔高度、坡向、坡度与植被覆盖度的关系.结果表明:(1)高程200~1600 m、坡向90°~160°和坡度10°~30°范围内,因人类活动干扰较少和温度、水分等条件较好,植被覆盖度高、质量较好.(2)植被覆盖度的空间分布特征主要受高程影响,其次为坡向,与坡度的相关性较小.(3)近33年连江流域植被覆盖度以剧烈增加区和稳定区为主,多分布于林场、自然保护区和人造林区等植被生境优越点.  相似文献   

8.
祁连山是我国西北地区重要的水源涵养保护区,是我国地形第一、二阶梯分界线,对气候变化极其敏感。基于气温、降水量和归一化植被指数(NDVI)数据,使用趋势分析、小波分析和相关分析方法,结合数字高程模型(DEM)数据,从海拔、坡度和坡向的角度探讨祁连山南坡NDVI变化及其与气温和降水的关系。结果表明: 1998—2017年,祁连山南坡生长季NDVI整体呈增长趋势,增长趋势为0.023·10 a-1。NDVI值在不同海拔、坡度和坡向上的变化存在差异性,NDVI值随海拔的升高呈先增后降趋势,海拔2700~3700 m区域的植被覆盖状况较好,>4700 m区域的植被出现退化现象;NDVI值随坡度增加呈降低态势;NDVI值在坡向上的差异较小,但阳坡的植被覆盖状况好于阴坡。生长季NDVI与气温、降水的关系密切,生长季NDVI、气温、降水均具有14年的变化周期,而不同海拔、坡度、坡向的植被受到气温和降水的影响不同,海拔<3700 m、>4700 m区域、坡度<25°区域和各坡向区域的植被均易受降水影响。  相似文献   

9.
罗鸿  杨存建 《生态科学》2023,42(1):234-241
为探究2000—2018年来长江上游植被覆盖度动态变化及驱动力,基于2000、2010及2018年3期Landsat TM影像,以长江首城宜宾为例,对其19年间植被覆盖度动态变化进行监测。应用ENVI和GIS技术对数据进行预处理,运用像元二分模型计算植被覆盖度,结合主成分分析和相关性分析方法探讨其变化的驱动力,实现对长江上游植被覆盖度的局部动态分析。这对于长江上游沿岸的生态保护意义重大。结果表明:1)中植被覆盖区在2000年和2010年面积占比最大,而2018年高植被覆盖度占比变为最大,宜宾市域整体植被覆盖度向好的方向发展。2)近19年植被改善和退化面积分别占33.51%、29.48%。退化区域遍布整个研究区,改善区主要分布在东部边缘。3)植被覆盖度随海拔升高而上升;随坡度的增加而呈不同变化;坡向对植被覆盖度的影响主要表现在温度上,阴坡小于阳坡,但宜宾正西北方向植被覆盖度最高,这是由于西北方向有大面积原始森林。4)研究区植被变化受经济、社会和人口的共同影响。森林面积、建设用地面积、GDP、总人口、耕地面积等因子是影响研究区植被覆盖变化的主要驱动力因子。  相似文献   

10.
基于TM NDVI的武功山山地草甸植被覆盖度时空变化研究   总被引:2,自引:0,他引:2  
以江西省武功山山地草甸为研究区,基于4期TM(Thematic Mapper,专题测图仪)卫星遥感影像,提取NDVI(Normalized Difference Vegetation Index,归一化植被指数),采用像元二分模型,运用ENVI 5.1和Arc GIS 10.0软件计算得到武功山山地草甸的植被覆盖度分布格局及动态变化。研究结果表明:(1)研究期间山地草甸面积减少了9.72%,呈递减趋势。20年来随着武功山风景区成立—旅游业发展—山地草甸生态修复,山地草甸植被覆盖度增加和减少交替,总体呈上升趋势;(2)山地草甸植被覆盖度呈现东南高西北低的空间分布特征。低覆盖度草甸区集中在武功山山脉的西北侧坡面的崖壁和部分山脊线上,而高覆盖度草甸区多分布在武功山山脉的东南坡面;(3)研究区山地草甸退化与改善并存,山地草甸最北端和白鹤峰-九龙山区域的东南坡、南坡低海拔处植被总体呈退化特征;发云界南部的东坡植被总体呈现改善特征。研究期间山地草甸退化面积比改善面积多出1.78%。(4)山地草甸植被覆盖度的分布格局和地形因子存在较高的相关性(P0.05):植被覆盖度随着坡向的变化而呈规律性的变化,总体上山地草甸植被覆盖度的分布为阳坡平坡阴坡;植被覆盖度先是随着坡度的上升而升高,在坡度15°—25°时达到峰值,然后随坡度的上升而下降,在45°—90°最低;植被覆盖度随海拔升高呈波浪式下降,1000—1200m最高,在主峰山顶海拔1800—1918.3m最低。遥感解译检验结果证明采用此方法对大面积山地草甸覆盖度分布及变化进行反演可行而准确;在后续研究中将采用不同季相的多期影像数据提取NDVI对研究区植被覆盖度进行长期监测,以便更准确可靠地分析山地草甸演化过程和趋势。  相似文献   

11.
疏勒河源区高寒草地景观对地形因子和冻土类型的响应   总被引:1,自引:0,他引:1  
基于我国环境小卫星的多光谱数据,结合野外实测数据,得到疏勒河源区的植被覆盖度图,并结合地形因子和多年冻土数据分析植被覆盖度对地形因子和多年冻土的响应.结果表明:疏勒河源区整体植被覆盖度低,区域内植被覆盖度差异性大、离散程度高,冰川、积雪、裸岩石砾地、裸地等非植被景观是疏勒河源区最主要的景观类型;坡度、坡向是限制植被分布的主要因子,坡度越小,平均植被覆盖度越大,随坡向由无坡向、阴坡、半阴(阳)坡到阳坡平均植被覆盖度不断减少;不同冻土类型区植被覆盖度差异性显著,极稳定型、稳定型、亚稳定型、过渡型、不稳定型、季节型冻土区平均植被覆盖度呈现出先增加后减少的趋势,且亚稳定型冻土区域的植被覆盖度最高.  相似文献   

12.
银朵朵  王艳慧 《生态学报》2021,41(3):1158-1167
以内蒙古大青山为研究区,基于4期TM/OLI影像,提取NDVI,采用像元二分模型,计算植被覆盖度,探测温带大陆性半干旱季风气候区2000-2017年间植被覆盖度的分布格局、动态变化及其地形分异规律。研究结果表明:(1)研究期间,随着研究区从经济开发到国家自然保护区功能规划的改变,植被覆盖度先降低后升高,整体上趋向良好,平均有64.19%的区域以中高植被覆盖度为主。(2)植被覆盖度空间格局总体上呈"东高西低,南高北低"的分布特征。中高植被覆盖度集中在大青山呼和浩特段南部和乌兰察布段,而低植被覆盖度主要分布在西段山体。(3)研究期间,研究区32.46%的植被覆盖度得以改善,12.92%的植被退化,表明研究区植被覆盖度总体改善。(4)地形因子对研究区植被覆盖度分布格局影响显著:植被覆盖度随海拔升高呈增加趋势,在2000-2296m高程带最高。植被覆盖度与坡度正相关,坡度越高,植被覆盖度越大。植被覆盖度在不同坡向上差异明显,总体上呈现阴坡 > 平地 > 阳坡的分布规律。  相似文献   

13.
徐凯健  曾宏达  任婕  谢锦升  杨玉盛 《生态学报》2016,36(21):6960-6968
福建省长汀县是中国南方最严重的水土流失区之一,在20世纪80年代初和2000年两次集中治理的推动下,当地生态环境已得到显著改善。基于Landsat系列卫星影像提取长汀县1975—2013年共6期植被覆盖度分布图,分析该区在不同时期植被覆盖度及其空间格局的时空动态,并探讨人类干扰与政策治理对植被覆盖度及景观格局的影响。结果表明:(1)近38年来,长汀县平均植被覆盖度由47.02%(1975)提升至71.47%(2013),在覆盖度结构上逐渐形成以中高和高植被覆盖度占主导的格局;县域中部河田盆地的植被覆盖度由30.83%(1975)提升至60.34%(2013)。(2)在景观格局上,研究期间长汀县极低、低和中低覆盖度斑块平均面积呈波动下降趋势、同时斑块密度增加,而中高、高植被覆盖度区域面积扩大,表明封禁、造林等治理措施导致植被覆盖度较高的区域不断汇聚成片。(3)植被覆盖度的提升在空间上主要集中在海拔600 m和坡度25°以下区域,尤其在海拔400—600 m和坡度5°—15°区域最显著,表明植被的破坏和恢复过程与人类活动的联系密切。(4)空间分析表明,在距离农户居民地边缘1.2 km的范围内,越接近居民地中心的区域植被覆盖度越低、破碎度越大且恢复缓慢,但这种空间差异伴随治理进行正在逐步减弱。总体上看,长汀县生态治理和人类干扰的长期驱动影响,其恢复速度在不断提升。  相似文献   

14.
基于2014年10月WorldViewⅡ遥感影像和DEM数据,结合泰山林场同期二类资源调查数据,对泰山世界遗产地的刺槐林(Robinia pseudoacacia L.)进行目视解译。然后通过建立地学信息图谱分析泰山刺槐林在主要地形因子(海拔、坡度和坡向)影响下的分布规律,结论如下:(1)刺槐纯林及其混交林,类型共计30种,投影面积约807.58 hm^2,其中刺槐纯林投影面积约454.76 hm^2,占刺槐林总面积的56.31%;(2)刺槐林分布在250—1200 m的海拔范围,集中分布在500—900 m的斜坡、陡坡和急坡,其中刺槐纯林在海拔250—300 m全部分布在平坡和缓坡;(3)刺槐林主要分布在半阴坡、半阳坡和阳坡,半阳坡分布最多,其中刺槐纯林在海拔1100—1200 m几乎全部分布在半阳坡和阳坡。  相似文献   

15.
地形因子对黄土高原山杏叶片功能性状的影响   总被引:1,自引:0,他引:1  
坡向和坡度是重要的地形因子,调控水、热组合可以影响植物生长及叶片功能性状,研究叶片功能性状对不同地形因子的响应,有助于了解植物对环境的适应策略.以阳坡(半阳坡)和阴坡(半阴坡)2个坡向,以及15°~20°、21°~25°和26°~30°3个坡度为环境梯度,对比研究了其对黄土高原主要造林树种山杏叶片功能性状(包括叶面积、比叶面积、叶干物质含量和叶片含水量)的影响,结果表明:1)坡向与坡度分别对所有叶片功能性状的影响均显著,坡向和坡度仅对叶片含水量具有交互作用.2)坡向梯度上,阳坡叶片的叶面积与阴坡相当,但叶干物质含量(0.24 g·g^-1)和叶片含水量(59.6%)均小于后者(0.27 g·g^-1和67.0%);阳坡叶片的比叶面积显著高于阴坡,其值分别为183.72和163.05 cm2·g^-1.3)坡度梯度上,叶片的比叶面积和叶面积均随坡度增大呈先减后增趋势,二者分别在15°~20°和26°~30°上达最大值,分别为184.04 cm^2·g^-1和21.14 cm2.4)除15°~20°与26°~30°的土壤水分无差异外,其余坡度以及坡向之间的土壤水分均存在显著差异,且土壤水分是造成叶片功能性状差异的主要原因之一,其中0~10 cm土层含水量对叶片功能性状的影响最大.5)叶片比叶面积与叶片含水量、叶干物质含量呈负相关,与叶面积呈正相关;叶干物质含量与叶片含水量呈正相关,与叶面积呈负相关;土壤含水量仅与叶片含水量呈正相关,与其他叶片功能性状均不相关.  相似文献   

16.
南昌市植被覆盖度时空演变及其对非气候因素的响应   总被引:2,自引:0,他引:2  
赵丽红  王屏  欧阳勋志  吴志伟 《生态学报》2016,36(12):3723-3733
植被是陆地生态系统的重要组成部分,植被覆盖在空间上的差异是气候和人类活动交互作用的结果。随着城市扩张,人类活动的加剧及不合理的土地利用方式导致了很多生态问题,对植被覆盖有重大影响。基于地形调节植被指数的像元二分模型,利用3期landsat-5 TM影像图分析南昌市植被覆盖度时空演变特征,并结合DEM数据分析植被覆盖度及变化的地形梯度分异规律,利用3期土地利用图量化植被覆盖度变化对土地利用方式转变的响应。结果显示:1)研究区2001—2010年植被覆盖度从0.54下降为0.42,总体上呈退化趋势,2005年之后植被退化有所减缓;2)植被覆盖度的地形梯度变化显著。植被覆盖度与高程呈高度的正相关性,在坡度0—22°梯度带呈现较高的正相关,在坡度22—40°梯度带呈现较高的负相关。80%以上植被覆盖变化集中在海拔30 m以下、坡度4°以下的区域;3)植被覆盖度变化是地形与土地利用综合作用的结果。在平原低丘区,土地利用行为是植被覆盖变化的主导因素。城市的建设和扩张导致占用耕地、林地和草地,以及大面积的撂荒、伐林等土地活动对植被覆盖退化的贡献率为50%以上,是植被覆盖退化的主要原因,而退耕还林还草、废弃地复垦、后备资源开发为植被覆盖增加的主要原因。可为平原低丘区生态环境监测和构建环境友好型土地利用模式提供科学依据。  相似文献   

17.
榆神府矿区植被覆盖的动态变化及其影响因素   总被引:2,自引:0,他引:2  
为了研究榆神府矿区植被覆盖度的时空演化规律,基于2005—2016年12期MOD13Q1数据,采用像元二分法、线性回归趋势线法和地形面积差异修正系数等方法,研究榆神府矿区植被覆盖度的时空分布特征和变化趋势,并结合地形地貌、土地利用和采矿活动等数据分析其与植被覆盖度变化的关系。结果表明:(1)在研究时段内,榆神府矿区植被覆盖度变化幅度比较剧烈。植被覆盖度低的区域分布在矿区乌兰木伦河以南、无定河以北的范围内;植被覆盖度高的区域分布在神府新民矿区和榆横矿区南部。(2)植被覆盖度年际变化趋势呈东北向西南先下降后上升的改善趋势,植被改善区域占榆神府矿区总面积的90%以上。(3)在海拔899~1000 m、坡度8°~12°和平原地区植被覆盖度的平均值最高;在海拔1000~1437 m、坡度4°~28°和丘陵地区植被改善类型的面积比最大。2010—2015年土地利用转换类型对于植被的影响要好于2005—2010年,且植被均以改善型为主。(4)由煤矿点、厂房、排土场、塌陷地以及缓冲区内植被覆盖分析可知,采矿活动对矿区植被影响比较明显。  相似文献   

18.
青海省东部农业区植被覆盖时空演变遥感监测与分析   总被引:2,自引:0,他引:2  
廖清飞  张鑫  马全  姚瑶  于东平 《生态学报》2014,34(20):5936-5943
基于象元二分模型,利用MODIS植被指数产品定量估算研究区2000—2009年生长季(4—9月)植被覆盖度,采用相关系数法和有序聚类分析方法对植被覆盖度时空变化趋势及突变进行了分析,并结合DEM分析其对地形因子的响应。结果显示:1)研究区2000—2009年整体植被覆盖度在波动中呈不显著增加趋势,其中2001年是显著突变年份,表明研究区植被覆盖度发生比较显著的变化;2)通过对地形因子的响应分析,植被覆盖度在高程2500m和4100m,坡度4°和26°发生突变;对各高程带、坡度带植被覆盖度年际变化趋势及突变年份进行分析,获得了各带的变化趋势及其突变年份。对研究获得的结果进行讨论,结果表明:研究区降水量的变化及退耕还林措施是植被覆盖度变化的重要影响因素,其中退耕还林措施对植被覆盖度变化的影响较大。  相似文献   

19.
胡尔查  王晓江  铁牛  洪光宇  苏和  张艳楠 《生态学报》2022,42(14):5945-5955
选取2000—2020年MODIS影像的归一化指数(NDVI)数据及同期的气象数据,采用趋势分析、变异系数、相关分析等方法,从海拔、坡度和坡向的角度分析了内蒙古大青山国家级自然保护区生长季NDVI的时空变化特征,并进一步探讨了NDVI时空变化与气候因子的相关性。结果表明:(1)2000—2020年,内蒙古大青山国家级自然保护区植被总体覆盖状况良好且呈增长趋势,增长速率为0.058/10a;(2)保护区NDVI空间分布呈现出西部低、东部高的从西到东逐渐增加的特征。保护区生长季NDVI均值随着海拔的升高而明显增加,随着坡度的增加呈缓慢增加趋势,在不同坡向上,生长季NDVI均值大小依次为阴坡>半阴坡>半阳坡>阳坡;(3)从NDVI变化趋势分析来看,2000—2020年大青山自然保护区植被覆盖改善的面积占总面积的61.75%,其中,显著改善、极显著改善面积分别占总面积的41.13%、20.62%,基本保持不变的面积占总面积的38.17%,退化面积占总面积的0.07%。在空间分布上,NDVI显著、极显著增加的区域主要分布在保护区西部和东部,中部以变化不显著为主。保护区各功能区N...  相似文献   

20.
地形对新疆昌吉州草地净初级生产力分布格局的影响   总被引:2,自引:0,他引:2  
杜梦洁  郑江华  任璇  蔡亚荣  穆晨  闫凯 《生态学报》2018,38(13):4789-4799
新疆草地资源丰富且地形多变,地形作为影响植被生产力最主要的环境因素之一却未被充分考虑。以Landsat和DEM为数据源,以新疆昌吉州草地为研究对象,应用CASA模型计算得到连年的净初级生产力,采用Arc GIS的空间分析方法对新疆昌吉州草地2000—2016年的净初级生产力分布进行了分析。研究结果表明,地形对生产力的分布有着显著影响,在海拔、坡度和坡向3个地形因子对整体趋势变化的影响分析中发现,坡度引起的NPP变化最大,坡向次之,海拔较小。在整体特征上,海拔每升高30 m,生产力增加4.11 g/m~2;坡度每增加1°生产力增加-0.225 g/m~2;N坡向生产力水平最高(23.23 g/m~2),SW坡向最低(3.54 g/m~2)。不同生产力年份生产力在地形因子作用下变化趋势相同但变化幅度不同,较高生产力年份中3个地形因子的变化幅度都是最大的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号