首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major question for understanding the ecology of parasite infections and diseases in wildlife populations concerns the transmission pathways among hosts. Network models are increasingly used to model the transmission of infections among hosts – however, few studies have integrated host behaviour and genetic relatedness of the parasites transmitted between hosts. In a study of the Australian sleepy lizard Tiliqua rugosa and its three‐host ixodid tick (Bothriocroton hydrosauri), we asked if patterns of genetic relatedness among ticks were best explained by spatial proximity or the host transmission network. Using synchronous GPS locations of over 50 adult lizards at 10 min intervals across the three‐month activity period, over 2 years, we developed two alternative parasite transmission networks. One alternative was based on the spatial proximity of lizards (at the centre of their home ranges), and the other was based on the frequency of asynchronous shared refuge use between pairs of lizards. In each year, adult ticks were removed from lizards and their genotypes were determined at four polymorphic microsatellite loci. Adult ticks collected from the same host were more related to each other than ticks from different hosts. Similarly, adult ticks collected from different lizards had a higher relatedness if those lizards had a shorter path length connecting them on each of the two networks we explored. The predictors of tick relatedness differed between years. In the first year, the asynchronous shared refuges network was the stronger predictor of tick relatedness, whereas in year two, the spatial proximity‐based network was the stronger predictor of tick relatedness. We speculate on how changing environmental conditions might change the relative importance of alternative processes driving the transmission of parasites.  相似文献   

2.
Mechanisms of host preference in ectoparasites are important to the understanding of host‐parasite interactions. Since ectoparasites negatively affect the condition of their hosts, while the hosts’ condition itself may affect the parasites’ choice, separating the factors that drive host preference from parasite impact asks for experiments. We combined the data of two choice experiments to investigate the preference of the nidicolous tick Ixodes arboricola when exposed to the nestlings of a passerine bird (Parus major). In the first experiment, in which complete broods at hatching were exposed to an ecologically relevant number of ticks, the relationship between tick loads and nestlings’ developmental status was characterized by a distribution with the highest tick loads on the more developed nestlings. Host preference became more apparent at a smaller brood size, suggesting a role for host density. In a second experiment we evaluated host choice in a pairwise choice experiment, exposing pairs of siblings with contrasting developmental status to eight ticks. In the first and the second pair, a median developed nestling was linked with the most developed and the least developed nestling, respectively. Seventy‐two h after tick exposure we measured the innate constitutive humoral immunity and haematocrit. No differences were found in innate immunity, but the least developed nestlings had on average a lower haematocrit than the median and most developed nestlings. Significantly fewer ticks attached on the least developed nestling compared to the median nestling, and this difference was more pronounced when the innate immunity of the median developed nestling was higher. No difference in tick load was found among the median and best developed nestlings. The linkage between host preference and host physiological condition provide further insight in the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of host, ticks and tick‐transmitted pathogens.  相似文献   

3.
Bothriocroton hydrosauri is a three-host ixodid tick that infests large reptiles in southeastern Australia, where its most common host is a large scincid lizard Tiliqua rugosa . Based on previous ecological and behavioural studies of this system, we propose a 'ripple' model of tick population dynamics, where only a few female ticks succeed in producing surviving offspring. These females then are the centres of ripples of their progeny spreading into the broader landscape. The model predicts higher relatedness among larvae than among nymphs or adults on a host, and significant spatial autocorrelation in larvae extending further than for the later life stages. The model also predicts that adult ticks are likely to encounter related partners and that this will generate inbreeding within the population. We tested those predictions using nine polymorphic microsatellite loci on a sample of 848 ticks (464 larvae, 140 nymphs and 244 adults) collected from 98 lizard hosts from near Bundey Bore Station in South Australia. Our data support the predictions and indicate that the dynamics of transmission among hosts play an important role in parasite population structure.  相似文献   

4.
McCoy KD  Tirard C  Michalakis Y 《Heredity》2003,91(4):422-429
To examine the potential importance of the spatial subdivision of hosts for the functioning of parasite populations, we analysed patterns of local genetic structure within natural populations of the seabird ectoparasite, Ixodes uriae, at the scale of the host breeding cliff. The seabird hosts of this parasite nest in dense colonies with a hierarchical spatial organisation (individual nests-breeding cliffs-colony). Using eight microsatellite markers and samples from three breeding cliffs of the Black-legged kittiwake (Rissa tridactyla), we found that tick populations were indeed genetically structured at this spatial scale. However, the nature of this structuring depended on the characteristics of the cliffs considered. Both the host nest and cliff topography seemed to be important factors in the isolation of tick groups, but their relative roles may depend on the size of the local parasite population. We found no evidence of isolation by distance within a cliff suggesting that independent tick dispersal may not be a significant force influencing population structure in highly infested cliffs. However, genetic structure seemed to decrease with tick life stage, nymphal ticks being more strongly structured than adult ticks. These results may be related to the clustering of tick progeny combined with differential mortality and dispersal probabilities of each life stage. Overall, results indicate that the spatial organisation of hosts can indeed have important consequences for the population genetic structure of their parasites and, thus, may modify parasite dynamics and the scale at which local coevolutionary processes occur.  相似文献   

5.
It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis) on mice (Peromyscus leucopus), we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated.  相似文献   

6.
Mechanisms of on-host habitat selection of parasites are important to the understanding of host-parasite interactions and evolution. To this end, it is important to separate the factors driving parasite micro-habitat selection from those resulting from host anti-parasite behaviour. We experimentally investigated whether tick infestation patterns on songbirds are the result of an active choice by the ticks themselves, or the outcome of songbird grooming behaviour. Attachment patterns of three ixodid tick species with different ecologies and host specificities were studied on avian hosts. Ixodes arboricola, Ixodes ricinus and Ixodes frontalis were put on the head, belly and back of adult great tits (Parus major) and adult domestic canaries (Serinus canaria domestica) which were either restricted or not in their grooming capabilities. Without exception, ticks were eventually found on a bird’s head. When we gave ticks full opportunities to attach on other body parts – in the absence of host grooming – they showed lower attachment success. Moreover, ticks moved from these other body parts to the host's head when given the opportunity. This study provides evidence that the commonly observed pattern of ticks feeding on songbirds’ heads is the result of an adaptive behavioural strategy. Experimental data on a novel host species, the domestic canary, and a consistent number of published field observations, strongly support this hypothesis. We address some proximate and ultimate causes that may explain parasite preference for this body part in songbirds. The link found between parasite micro-habitat preference and host anti-parasite behaviour provides further insight into the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of hosts, ectoparasites and the micro-pathogens for which they are vectors.  相似文献   

7.
Devevey G  Brisson D 《Parasitology》2012,139(7):915-925
Parasites are often aggregated on a minority of the individuals in their host populations. Although host characteristics are commonly presumed to explain parasite aggregation on hosts, spatio-temporal aggregation of parasites during their host-seeking stages may have a dominant effect on the aggregation on hosts. We aimed to quantify, using mixed models, repeatability and autocorrelation analyses, the degree to which the aggregation of blacklegged ticks (Ixodes scapularis) on white-footed mice (Peromyscus leucopus) is influenced by spatio-temporal distributions of the host-seeking ticks and by heterogeneity among mice. Host-seeking ticks were spatially aggregated at both the larval and nymphal life-stages. However, this spatial aggregation accounted for little of the variation in larval and nymphal burdens observed on mice (3% and 0%, respectively). Conversely, mouse identity accounted for a substantial proportion of the variance in tick burdens. Mouse identity was a significant explanatory factor as the majority of ticks parasitized a consistent set of mice throughout the activity seasons. Of the characteristics associated with mouse identity investigated, only gender affected larval burdens, and body mass and home range sizes in males were correlated with nymphal burdens. These analyses suggest that aggregation of ticks on a minority of mice does not result from the distribution of host-seeking ticks but from characteristics of the hosts.  相似文献   

8.
The parasitic system ixodid tick (parasite)--vertebrate animal (host) is relatively stable in space and time. Equilibrium state in the system is maintained at the low levels of the hosts' infection and moderate intensity of their immunity. Parasite sensitizes the host's organism at the stage of feeding on antigens of its saliva and the host develops different degrees of resistance preventing the subsequent individuals of ticks from normal feeding. Antitick immunity is species specific. Its intensity is defined by the species belonging of the parasite and host, intensity and intervals between infections, availability of "anti-immune mechanisms" in tick and by many other factors, which are realized at the feeding stage. Regulation of the number of ticks, depending on their abundance in the host's population, is attained due to the oversparse, close to negative binomial distribution on hosts. This mechanism functions on the principle of feedback, so that at the excessive number of the parasite some individuals in the host's population, which are especially subjected to infection, do not cope with parasitic burden and die. However, ticks, which failed to finish their feeding and represent a disproportionately great part of the whole parasite's population, die together with them and the parasitic system quickly restores its stability. In anthropocoenoses and ecosystems at different stages of anthropogenic transformation mutual regulation mechanisms of the parasite and host number break down. As a consequence, extremely high rises in the number of ticks and epizootics of agricultural animals associated with them can occur.  相似文献   

9.
We investigated the Amblyomma fuscum load on a pullulating wild rodent population and the environmental and biological factors influencing the tick load on the hosts. One hundred and three individuals of Thrichomys laurentius were caught in an Atlantic forest fragment in northeastern Brazil, as part of a longitudinal survey on ticks infesting non-volant small mammals. Ticks (n = 342) were found on 45 individuals and the overall mean intensity of infestation was 7.6 ticks per infested rodent. Ticks were highly aggregated in the host population and the negative binomial distribution model provides a statistically satisfactory fit. The aggregated distribution was influenced by sex and age of the host. The microhabitat preference by T. laurentius probably increases contact opportunities between hosts and aggregated infesting stages of the ticks and represents important clues about the habitat suitability for A. fuscum.  相似文献   

10.
Abstract Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake ( Rissa tridactyla ) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin ( Fratercula arctica ) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts.  相似文献   

11.
Macroparasites are commonly aggregated on a small subset of a host population. Previous explanations for this aggregation relate to differences in immunocompetence or the degree to which hosts encounter parasites. We propose active tick host choice through chemical attraction as a potential mechanism leading to aggregated tick burdens. We test this hypothesis using a Y-maze olfactometer, comparing chemical attraction responses of larval and nymphal Dermacentor variabilis ticks parasitic to the white-footed mouse, Peromyscus leucopus, as a function of host sex and host body mass. We hypothesized that larger hosts and male hosts would be most attractive to searching ticks, as these hosts commonly have higher tick burdens in the field. Chemical attraction trials were run in the presence and absence of a known tick attractant, host-produced carbon dioxide (CO2). Male hosts and larger hosts were preferred by nymphal D. variabilis in the presence and absence of CO2, whereas larvae had no detectable host preference. The current study suggests that host-produced chemical cues may promote aggregated tick burdens among hosts of a single species based on host body mass and sex.  相似文献   

12.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

13.
1. We studied the effect of flea infestation on the pattern of tick (Ixodes ricinus and Ixodes trianguliceps) infestation on small mammals. 2. We asked (1) whether the probability of an individual host being infested by ticks was affected by its infestation of fleas (number of individuals and species) and (2) whether the abundance and prevalence of ticks in a host population was affected by the abundance, prevalence, level of aggregation, and species richness of fleas. 3. The probability of a host individual being infested by ticks was affected negatively by flea infestation. At the level of host populations, flea abundance and prevalence had a predominantly positive effect on tick infestation, whereas flea species richness had a negative effect on tick infestation. 4. The effect of flea infestation on tick infestation was generally greater in I. ricinus than in I. trianguliceps, but varied among host species. 5. It can be concluded that the effect of fleas on tick infestation of small mammals may be either negative or positive depending on the level of consideration and parameters involved. The results did not provide support for direct interactions between the two ectoparasite taxa, but suggested population and community dynamics and the defence system of the hosts as possible factors.  相似文献   

14.
The process responsible for the formation of genetically distinct populations associated with different host species is known as host-associated differentiation (HAD). Many insect parasites of plants have been shown to exhibit HAD but there have been fewer studies of HAD in parasites of vertebrate animals. Previous to this study, HAD has been documented in at least three species of ticks. The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) was chosen as the focal species for this study due to its importance as the vector of tularemia and Rocky Mountain spotted fever. Previous population genetic studies of this tick found the existence of various haplotypes but the tick’s host origins were unknown. In this study, ticks were collected from 15 vertebrate host species to test for HAD using single nuclear polymorphisms (SNPs). In total, 136 individual D. variabilis ticks were sequenced using ddRADseq. Genomic evidence was found to point to D. variabilis exhibiting HAD on eight different hosts. A STRUCTURE analysis showed that the highest posterior probability was obtained with a population size of eight and these populations correlated with host species. Pairwise FST values were as high as 0.622 and indicated a range of genetic distinction between host groups. In addition, ticks collected from the vegetation appeared as one homogenous distinct genotype suggesting the existence of nidicolous (nest dwelling) and non-nidicolous genotypes. The identification of host race formation occurring in this animal parasite has implications for the understanding of D. variabilis pathogen transmission and targeted control efforts because genetically distinct populations can differ in traits relevant to these applications.  相似文献   

15.
Due to the close association between parasites and their hosts, many ‘generalist’ parasites have a high potential to become specialized on different host species. We investigated this hypothesis for a common ectoparasite of seabirds, the tick Ixodes uriae that is often found in mixed host sites. We examined patterns of neutral genetic variation between ticks collected from Black‐legged kittiwakes (Rissa tridactyla) and Atlantic puffins (Fratercula arctica) in sympatry. To control for a potential distance effect, values were compared to differences among ticks from the same host in nearby monospecific sites. As predicted, there was higher genetic differentiation between ticks from different sympatric host species than between ticks from nearby allopatric populations of the same host species. Patterns suggesting isolation by distance were found among tick populations of each host group, but no such patterns existed between tick populations of different hosts. Overall, results suggest that host‐related selection pressures have led to the specialization of I. uriae and that host race formation may be an important diversifying mechanism in parasites.  相似文献   

16.
Abstract The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (~ 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark‐recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2‐ or 3‐year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host–parasite dynamics will help in the conservation management of both the host and its parasites.  相似文献   

17.
The newly described tick Amblyomma vikirri has a narrow host range, being found mainly on the Australian lizard, Egernia stokesii and rarely on another lizard, Tiliqua rugosa. Both hosts are in the family Scincidae. Larvae of A. vikirri were as successful in locating E. stokesii as T. rugosa from a range of release distances between 20 and 120 mm from the host. Over this range the proportion of ticks which successfully located hosts declined and the time taken by successful ticks to locate hosts increased with increasing release distance. From 60 mm, larvae of A. vikirri located four other lizard species from the families Scincidae and Agamidae and two non-living targets as successfully as they did E. stokesii. The only evidence that there was any host specificity in the searching behaviour of larvae of A. vikirri was that A. vikirri larvae spent less time paused and questing when they were searching for E. stokesii than when they were searching for T. rugosa. Aponomma hydrosauri, a tick which commonly infests T. rugosa but not E. stokesii, spent less time paused and questing when it was searching for T. rugosa than when it was searching for E. stokesii. However, the results overall suggest that the narrow host range of A. vikirri cannot be explained by any ability of the larvae of that species to discriminate between their natural host and other reptile species.  相似文献   

18.
Tick vector systems are comprised of complex climate‐tick‐host‐landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially‐explicit, individual‐based model, parameterized to represent ecological conditions typical of the south‐central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size‐class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host‐class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system‐level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co‐occurrence of actively host‐seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host‐seeking ticks in the system were due primarily to the degree of co‐occurrence of periods of high densities of unfed ticks and periods of high densities of hosts.  相似文献   

19.
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.  相似文献   

20.
Almost all macroparasites show over‐dispersed infections within natural host populations such that most parasites are distributed among a few heavily‐infected individuals. Despite the importance of parasite aggregation for understanding system stability, the potential for population regulation, and super‐spreading events, many questions persist about its underlying drivers. Theoretically, aggregation results from heterogeneity in host exposure, resistance, and tolerance. However, few studies have examined how host spatial arrangement – which likely affects both parasite encounter and density‐dependent interactions – influences infection and dispersion, representing a critical gap in our current knowledge regarding the possible drivers of parasite aggregation. Using field data from over 165 ponds and 8000 hosts, we evaluated how the spatial clustering of amphibian larvae within ponds 1) varied among different amphibian species, and 2), affected the distribution of parasites within the host population using Taylor's power law. A complementary mesocosm experiment used field‐guided manipulations of the spatial arrangement of larval amphibians to create a gradient in host clustering while controlling host density, thereby testing for spatial effects on both infection success and aggregation by three different trematode species. Our field data indicated that larval amphibians exhibited significant spatial clustering that was well captured by Taylor's power law (R2 0.92 to 0.97 for different host species), but the residual variation only weakly correlated with observed patterns of trematode parasite over‐dispersion. Correspondingly, experimental manipulation of host clustering had no effects on parasite infection success or the degree of parasite aggregation among cages or mesocosms. Given the importance of parasite over‐dispersion for host populations and disease dynamics, we advocate for further investigations of host and parasite spatial aggregation, particularly studies that incorporate and/or control for heterogeneity in exposure and susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号