首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
急性早幼粒细胞白血病(APL)是急性髓性白血病的一种亚型,其分子特征是具有t(15;17)(q22;q21)染色体易位,并形成融合肿瘤蛋白,进而阻止早幼粒细胞分化成熟。全反式维甲酸(ATRA)和三氧化二砷(ATO)作为经典的治疗APL的药物,能够通过转录调节并激活泛素-蛋白酶体通路,促进融合肿瘤蛋白降解,发挥其临床抗白血病的功效。最近的研究发现,ATRA与ATO均能够诱导APL细胞自噬,且自噬在融合肿瘤蛋白降解及诱导早幼粒细胞分化中发挥至关重要的作用。我们简要综述近年来APL的研究进展及自噬在APL治疗中的作用。  相似文献   

2.
探讨PTEN在表没食子儿茶素没食子酸酯(EGCG)增强维甲酸(ATRA)诱导的急性早幼粒细胞白血病(APL)细胞分化中的作用。我们分别将ATRA、EGCG及两种药物联合应用于NB4与HL-60细胞72 h,从形态学上观察细胞核的变化;Western blotting检测PTEN及髓系分化标志CD11b的表达;免疫荧光检测PTEN的入核情况;CCK-8检测细胞增殖率。结果显示,ATRA与EGCG联合作用于NB4与HL-60细胞后,PTEN与CD11b的表达较单独应用ATRA时增加。PTEN特异性抑制剂SF1670作用于NB4后,细胞分化明显减少;PI3K抑制剂LY294002作用后,PTEN及CD11b表达增加。这些均表明EGCG能够增强ATRA诱导APL细胞株的分化作用,且这种促进作用与PTEN的增加是相关的。  相似文献   

3.
该文主要研究在急性早幼粒细胞白血病NB4细胞中, miR-382-5p通过调控靶基因PTEN(phosphatase and tensin homologue)抑制了全反式维甲酸(all-trans retinoic acid, ATRA)诱导的急性早幼粒细胞分化。我们运用ATRA(1μmol/L)诱导细胞分化; Western blot检测PTEN及髓系分化标志物CD11b的蛋白质水平;实时荧光定量PCR检测miR-382-5p的表达水平;过表达PTEN的慢病毒载体分别感染NB4细胞和HL-60、THP-1细胞;脂质体转染miR-382-5p的模拟剂(mimics)和特异性抑制剂(inhibitors)NB4细胞。结果显示, PTEN促进ATRA诱导的NB4细胞分化,而在HL-60和THP-1细胞中并无明显促分化效应。NB4细胞中,脂质体转染miR-382-5p mimics在mRNA和蛋白水平均抑制了PTEN的表达,并且抑制了ATRA诱导的分化;转染miR-382-5p inhibitors则恢复了PTEN表达,同时促进了ATRA诱导的急性早幼粒细胞NB4细胞的分化。该文结果提示, miR-382-5p靶向抑制了PTEN的表达从而抑制ATRA诱导的NB4细胞分化。  相似文献   

4.
目的:观察急性早幼粒细胞白血病(APL)细胞来源微粒(APL-MP)的促凝活性、表面组织因子(TF)表达情况、TF在其促凝活性中发挥的作用及分化治疗药物三氧化二砷(ATO)对上述指标有何影响。方法:选取3例初发APL患者,提取骨髓APL细胞,3名缺铁性贫血患者提取骨髓单个核细胞作为对照。分别用不同浓度ATO处理APL细胞24 h、48 h、72 h,收集细胞培养液提取微粒。采用流式细胞术对微粒进行定量分析并进行微粒表面TF表达情况检测;利用凝血实验比较不同组细胞释放微粒的促凝血活性;应用抗TF抗体抑制微粒促凝血活性实验检测TF在APL-MP的促凝血活性中发挥多大作用。结果:1.0μM及2.0μM ATO能显著促进APL细胞释放微粒。与正常骨髓来源单个核细胞释放的微粒相比,骨髓APL-MP的TF表达及促凝活性均显著增高,0.5μM及1.0μM ATO处理可以有效降低APL-MP的TF表达及促凝活性,且这一作用呈时间依赖性。各组APL-MP经抗TF抗体孵育后凝血时间显著延长。结论:APL-MP的TF表达和促凝学活性均显著增高,并且TF在APL-MP的促凝血活性中发挥着重要作用。ATO能显著促进APL细胞释放微粒,低浓度ATO可以有效降低APL-MP的TF表达及促凝血活性。  相似文献   

5.
贺婧  童平珍  罗招阳  曹建国 《生物磁学》2009,(15):2960-2964
急性前髓细胞性白血病或急性早幼粒细胞白血病(APL)是一种特殊类型的血液系统恶性克隆性疾病,其特点是异常早幼粒细胞无限增殖伴分化受阻,是白血病中最危重的一种类型。95%以上的APL患者具有(t15;17)染色体异常,形成PML/RAR融合基因,几乎存在于所有的APL细胞中,成为APL细胞的一个特异性标志,是APL发病重要分子基础。自从全反式维甲酸(ATRA)成功用于临床诱导APL分化以来,对诱导分化剂的作用机制的研究已取得很大的进展。本文主要对APL细胞遗传学和分子生物学特征、发病机制、诱导分化机制、分化后细胞表型变化等方面对APL细胞诱导分化实验的研究进展进行综述。  相似文献   

6.
该文旨在探讨带核定位信号的维甲酸受体α(nuclear localization signal retinoic acid receptor alpha,NLS-RARα)对人急性早幼粒白血病(acute promyelocytic leukemia,APL)细胞株NB4分化的影响及其机制。免疫印迹实验检测全反式维甲酸(all-trans retinoic acid,ATRA)诱导的NB4细胞分化标志物C/EBPβ、CD11b和p38α蛋白质水平;利用慢病毒介导的NLS-RARα基因过表达,进一步用免疫印迹实验验证过表达效率并检测NLS-RARα对NB4细胞分化标志物C/EBPβ、CD11b和p38α蛋白质水平的影响;间接免疫荧光实验分析NLS-RARα与p38α的空间共定位;免疫共沉淀实验分析NLS-RARα与p38α的相互作用。结果显示,生理浓度和药理浓度的ATRA促进NB4细胞分化的同时也激活了p38α,且p38α的活性变化与髓系分化标志物C/EBPβ变化一致;髓系分化表面标志物CD11b表达量在药理浓度ATRA(1μmol/L)处理下达到最高;NLS-RARα抑制NB4细胞的分化,且只有在ATRA存在的条件下,NLS-RARα抑制NB4细胞的分化与下调p38α活性相关;NLSRARα与p38α存在空间共定位且NLS-RARα与p38α直接相互作用。该研究结果提示,当存在ATRA诱导时,NLS-RARα与p38α直接相互作用后下调p38α的活性进而抑制NB4细胞的分化。  相似文献   

7.
目的:研究γ-生育三烯酚联合亚砷酸对急性早幼粒细胞NB4生长的抑制作用及可能的分子机制。方法:采用CCK-8、细胞周期实验检测细胞增殖、利用激光共聚焦显微镜、Annexin V/PI染色、Caspase活性检测、Western Blot等方法测定细胞凋亡。采用1μmol/L ATO及不同浓度(0、15、30、45μmol/L)的γ-生育三烯酚处理NB4细胞24、48和72小时,通过CCK-8检测细胞的增殖情况,流式细胞术、激光共聚焦显微镜检测细胞周期和凋亡情况,检测Caspase3,8,9的活性,Western Blot检测细胞中c-caspase-3、Bcl-2和survivin的蛋白表达。结果:γ-生育三烯酚联合亚砷酸显著抑制NB4细胞增殖(P0.01),且随着作用时间延长和γ-生育三烯酚浓度的增加,其增殖抑制作用增强;细胞周期阻滞在S期,S期的比例由38.21%±2.99上升到50.31%±5.03;γ-生育三烯酚联合亚砷酸诱导NB4细胞凋亡,1μmol/L ATO联合15、30μmol/L的γ-生育三烯酚处理48h后,细胞活率分别为82.27%±3.16、66.97%±3.17、12.63%±2.66;1μmol/L ATO联合30μmol/L的γ-生育三烯酚处理后,NB4细胞caspase-3,-8,-9的活性均较ATO单独用药组显著增高,c-caspase-3表达增高而Bcl-2和survivin蛋白的表达无明显变化。结论:生育三烯酚联合亚砷酸对急性早幼粒细胞NB4的生长具有抑制作用,此作用可能与抑制增殖并诱导凋亡相关,其作用靶点可能与促进Cas-pase诱导的凋亡有关。  相似文献   

8.
目的:建立全反式维甲酸(ATRA)诱导分化的NB4细胞浸润裸鼠肺组织模型,为探讨诱导分化综合征(DS)的发生机制、预防和治疗提供研究平台。方法:首先,取对数生长期的NB4细胞在ATRA诱导下、在RPMI 1640培养基中、在37℃和5%CO2的条件下培养,72 h后收获诱导分化后的NB4细胞接种裸鼠尾静脉。然后,30天后处死裸鼠取肺组织,用G显带方法检测裸鼠肺组织的染色体核型,HE染色观察裸鼠肺组织学,电子显微镜观察超微结构,RT-PCR法和FISH技术检测裸鼠肺组织PM L-RARa m RNA转录本及PML-RARa基因的表达。结果:实验组染色体核型符合NB4细胞特征,在组织学和超微结构上明显见到分化的NB4细胞浸润裸鼠肺组织,检测到PM L-RARa m RNA转录本和PML/RARa融合基因;对照组未见到分化的NB4细胞浸润裸鼠肺组织,PML-RARa m RNA转录本和PML/RARa融合基因检测阴性。结论:用ATRA诱导分化的NB4细胞成功的建立了浸润裸鼠肺组织模型,为探讨诱导分化综合征(DS)的发生机制、预防和治疗提供了研究平台。  相似文献   

9.
低氧诱导因子和白血病细胞分化   总被引:3,自引:0,他引:3  
三氧化二砷(As2O3,ATO)是一种新发现的有效治疗急性早幼粒细胞白血病(acute promyelocytic leukemia,APL)的药物。研究发现,该药物在体外诱导细胞分化的能力不如体内明显。以此为基础,最近我们意外地发现模拟低氧化合物和中度低氧环境能够直接在体外诱导急性髓系白血病细胞分化,也选择性地加强三氧化二砷诱导的APL细胞分化。进一步地,间歇性低氧能够显著延长移植的白血病小鼠生存时间,并且抑制白血病细胞浸润并诱导其分化。以这些工作为基础,我们就低氧诱导白血病细胞分化的分子机制进行了深入研究。本文将就相关工作作一综述,并讨论有待进一步研究的问题。  相似文献   

10.
该文旨在探讨盐霉素(salinomycin,SAL)对急性早幼粒细胞白血病NB4细胞增殖和分化的影响及其可能的机制。采用CCK-8(cell counting kit-8)实验检测细胞增殖,瑞氏染色观察细胞形态学变化,流式细胞术检测粒细胞分化标志物CD11b的表达,Western blot检测相关蛋白质水平变化。结果显示,SAL抑制了细胞增殖;SAL作用72 h后,细胞呈现典型分化形态学改变。随着SAL的浓度升高,CD11b阳性的细胞比例以及CD11b、C/EBPβ蛋白质水平逐渐增加。此外,SAL降低了β-catenin以及下游分子C-myc、Cyclin D1的蛋白质水平。该研究还探讨了联合使用Wnt/β-catenin信号通路的抑制剂IWR-1与SAL对细胞分化的影响。结果显示,与单独使用SAL相比,联合使用SAL和IWR-1促进了SAL诱导的NB4细胞分化。该研究结果提示,SAL可抑制NB4细胞的增殖,并可能通过抑制Wnt/β-catenin信号通路诱导细胞分化。  相似文献   

11.
Crocetin, the major carotenoid in saffron, exhibits potent anticancer effects. However, the antileukemic effects of crocetin are still unclear, especially in primary acute promyelocytic leukemia (APL) cells. In the current study, the potential antipromyelocytic leukemia activity of crocetin and the underlying molecular mechanisms were investigated. Crocetin (100 µM), like standard anti-APL drugs, all-trans retinoic acid (ATRA, 10 µM) and As2O 3 (arsenic trioxide, 50 µM), significantly inhibited proliferation and induced apoptosis in primary APL cells, as well as NB4 and HL60 cells. The effect was associated with the decreased expressions of prosurvival genes Akt and BCL2, the multidrug resistance (MDR) proteins, ABCB1 and ABCC1 and the inhibition of tyrosyl-DNA phosphodiesterase 1 (TDP1), while the expressions of proapoptotic genes CASP3, CASP9, and BAX/BCL2 ratio were significantly increased. In contrast, crocetin at relatively low concentration (10 µM), like ATRA (1 µM) and As 2O 3 (0.5 µM), induced differentiation of leukemic cells toward granulocytic pattern, and increased the number of differentiated cells expressing CD11b and CD14, while the number of the immature cells expressing CD34 or CD33 was decreased. Furthermore, crocetin suppressed the expression of clinical marker promyelocytic leukemia/retinoic acid receptor-α ( PML/RARα) in NB4 and primary APL cells, and reduced the expression of histone deacetylase 1 ( HDAC1) in all leukemic cells. The results suggested that crocetin can be considered as a candidate for future preclinical and clinical trials of complementary APL treatment.  相似文献   

12.
All-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells. Here we investigated the role and regulation of death-associated protein-5 (DAP5/p97/NAT1), a novel inhibitor of translational initiation, in APL cell differentiation and apoptosis. We found that ATRA markedly induced DAP5/p97 protein and gene expression and nuclear translocation during terminal differentiation of APL (NB4) and HL60 cells but not differentiation-resistant cells (NB4.R1 and HL60R), which express very low levels of DAP5/p97. At the differentiation inducing concentrations, ATO (<0.5 μM), dimethyl sulfoxide, 1,25-dihydroxy-vitamin-D3, and phorbol-12-myristate 13-acetate also significantly induced DAP5/p97 expression in NB4 cells. However, ATO administered at apoptotic doses (1–2 μM) induced expression of DAP5/p86, a proapoptotic derivative of DAP5/p97. ATRA and ATO-induced expression of DAP5/p97 was associated with inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, DAP5/p97 expression was upregulated by inhibition of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway via LY294002 and via rapamycin. Finally, knockdown of DAP5/p97 expression by small interfering RNA inhibited ATRA-induced granulocytic differentiation and ATO-induced apoptosis. Together, our data reveal new roles for DAP5/p97 in ATRA-induced differentiation and ATO-induced apoptosis in APL and suggest a novel regulatory mechanism by which PI3K/Akt/mTOR pathway inhibition mediates ATRA- and ATO-induced expression of DAP5/p97. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. Ozpolat and U. Akar contributed equally.  相似文献   

13.
14.
This study was designed to identify the cell surface protein markers that can differentiate between chronic myeloid leukemia (CML) and acute promyelocytic leukemia cells (APL). The differentially expressed plasma membrane proteins were analyzed between CML cell line (K562) and APL cell line (NB4) using the comparative proteomic approach. The cell membrane proteins were enriched by labeling with a membrane-impermeable biotinylation reagent, sulfo-NHS-SS-Biotin, and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS). By comparative proteomic analysis of K562 and NB4 cells, we identified 25 membrane and 14 membrane-associated proteins. The result of LC-MS/MS combined with chemical tagging method was validated by confirming the expression and localization of one of the differentially expressed plasma membrane proteins, CD43, by FACS and confocal microscopy. Our results indicate that CD43 could be a potential candidate for differentiating CML from APL.  相似文献   

15.
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.  相似文献   

16.
Abstract

Acute myeloid leukemia (AML) constitutively express growth factors and cytokines for survival. Chemotherapy alters these signals to induce cell death. However, drug resistance in AML remains a major hindrance to successful treatment and early warning is unavailable. Modulation of signaling pathways during chemotherapy may provide a window to detect response and predict treatment outcome. Blood samples collected from AML patients before and at day-3 of induction therapy were compared for changes in expression of CD117, CD34, pro-inflammatory cytokines and mediators of Akt and MAPK pathways, using multi-color flow cytometry. Nine patients were diagnosed as drug-resistant and seven sensitive to chemotherapy. Twelve were paired. Average percentages of CD34 (66.8?±?11.7% vs. 26.2?±?5.8%, p?=?0.033) and pBAD (66.9?±?8.2% vs. 28.9?±?8.2%, p?=?0.016) were significantly increased in chemo-resistant (N?=?9) compared to chemo-sensitive (N?=?5) samples. Percentages of CD34 were strongly correlated with pBAD (R?=?0.785; p?=?0.001; N?=?14) and pFKHR (R?=?0.755; p?=?0.002; N?=?14) at day-3 induction. Chemo-sensitive cases expressed significantly higher percentages of IL-18Rα (71.9?±?9.6% vs. 29.8?±?5.8%, p?=?0.016). Though not significantly different in the outcome, IL-1β was strongly associated with activated Akt-S473, IL-6 with phosphorylated JNK and FKHR while TNF-α appeared to trigger Bim, in treated samples. These preliminary results suggested AML cells resistant to chemotherapy increased expression of CD34 and may signal through pBAD while cells sensitive to chemotherapy-induced IL18Rα expression. These were observed early during induction therapy. Identifying CD34 is interesting as it is a convenient marker to monitor drug-resistance in AML patients. Inhibition of CD34 and pBAD signaling may be important in treating drug-resistant AML.  相似文献   

17.
急性早幼粒细胞白血病(APL)曾被认为是最迅速的致命白血病,特点为临床表现凶险,早期死亡率高,治愈率低。药物全反式维甲酸及亚砷酸的应用,使APL的治疗取得了很大成功,其完全缓解率可达90%。然而APL的复发率仍然较高,约15%-30%。降低复发率和提高长期生存已成为研究重点,如何选择合理的缓解后治疗策略至关重要。缓解后治疗一般包括巩固治疗和维持治疗,而最佳治疗方案的确定仍然有待商榷。因此,本文就APL缓解后巩固治疗回顾相关文献进行整合分析,综述APL巩固治疗的研究进展。  相似文献   

18.
Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.  相似文献   

19.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

20.
The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply a new combination therapy based on ATRA. Therefore, research strategies to further sensitize cells to retinoids are urgently needed. In this study, we showed that Dihydromyricetin (DMY), a 2,3-dihydroflavonol compound, exhibited a strong synergy with ATRA to promote APL NB4 cell differentiation. We observed that DMY sensitized the NB4 cells to ATRA-induced cell growth inhibition, CD11b expression, NBT reduction and myeloid regulator expression. PML-RARα might not be essential for DMY-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of p38-STAT1 signaling pathway. Taken together, our study is the first to evaluate the synergy of DMY and ATRA in NB4 cell differentiation and to assess new opportunities for the combination of DMY and ATRA as a promising approach for future differentiation therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号