首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global patterns in local number of insect galling species   总被引:3,自引:0,他引:3  
Abstract. We evaluate a three-part hypothesis explaining why gall-inducing insect species richness is so high in scleromorphic vegetation: (1) persistence of low nutrient status scleromorphic leaves facilitates the galling habit in warm temperate latitudes; (2) favourable colonization sites for gallers result from reduced hygrothermal stress, high phenolics in the outer cortex of the gall, and reduced carnivore and fungal attack in the gall; and (3) in more mesic sites, mortality is high due to carnivore attack and invasion of galls by fungi. Over 280 samples of local species of galling herbivorous insects from fourteen countries on all continents except Antarctica revealed a strong pattern of highest richness in warm temperate latitudes, or their altitudinal equivalents. The peak of galling species richness on the latitudinal gradient from the equator into the Arctic was between 25 to 38° N or S. Galling species were particularly diverse in sclerophyllous vegetation, which commonly had greater than twelve species per local sample. In mesic, non-sclerophyllous vegetation types the number of galling species was lower with twelve or fewer species present. Many sites in sclerophyllous vegetation supported between thirteen and forty-six galling species locally, including campina islands in Amazonia, cerrado savanna in central Brazil, the Sonoran Desert in Arizona and Mexico, shrubland in Israel, fynbos in South Africa and coastal scleromorphic vegetation in Australia. At the same latitude, or its elevational equivalent, galling species richness was significantly higher in relatively xeric sites when compared to riparian or otherwise mesic habitats, even when scleromorphic vegetation dominated the mesic sites. The results were consistent with the hypothesis and extend to a more general level the patterns and predictions on the biogeography of gall-inducing insects.  相似文献   

2.
1. Gall‐forming insects are a guild of endophages that exhibit a high level of fidelity to their host plants, however, their level of host specificity is seldom explicitly tested. 2. Gall‐forming insect taxa from 32 species of woody tropical plants with resolved phylogenetic relationships were collected and reared, representing 15 families from all the major clades of angiosperms, at three lowland rainforest locations in Madang, Papua New Guinea (PNG). 3. More than 8800 galled plant parts were collected from 78 gall morphospecies at an average of 2.4 per host plant. Total species richness at the sampling sites was estimated to be 83–89. All but one morphospecies were monophagous resulting in an effective specialisation of 0.98. 4. Specific leaf weight, foliar nitrogen, the presence of latex, and the successional preference of plant species all gave a phylogenetic signal, but only plant successional preference influenced the species richness of galls on analysis of phylogenetically independent contrasts. Gall species were distributed randomly among host plant species and showed no preference for any particular plant lineage. Furthermore, most gall‐forming taxa were evenly dispersed across the host plant phylogeny. 5. In the tropical rainforests of New Guinea, gall‐forming insects are ubiquitous but occur in species‐poor assemblages. Local species richness is closely tied to the diversity of angiosperms owing to very high host specificity. 6. Finally, galler species richness data from the literature across habitats and latitudes were compared and suggest that tropical rainforests may be richer in galls than previously acknowledged.  相似文献   

3.
Five hypotheses were tested to explain the pattern of galling insect species richness in four neotropical savanna physiognomies, 'canga ', 'campo sujo', 'cerrado' s. st., and 'cerradão', that occur in Minas Gerais, southeastern Brazil. We found 125 species of galling insects on 80 host plant species. The increase of plant species richness explained 35% of the variation in galling insect richness, corroborating the plant species richness hypothesis. Most of the galling species occurred on trees, followed by shrubs, and herbs. However, the difference in mean number of galls was only statistically significant between herbs and trees, corroborating partially the plant structural complexity hypothesis. A significant relationship was observed between galling species richness and density of herbs, and shrubs, corroborating partially the resource concentration hypothesis. Galling insect richness showed a negative correlation with magnesium, potassium, and zinc on soil, corroborating the soil fertility hypothesis. The content of magnesium, potassium, iron and CTC (T) explained 72% of the variation in galling insect richness. Plant family size positively influenced galling insect richness, corroborating the plant family size hypothesis. Overall, the results corroborate the hypothesis that predicts that habitat stress is the main factor generating the patterns of galling insect richness in Brazilian savannas.  相似文献   

4.
Evidence regarding the effect of temperature and rainfall on gall‐inducing insects is contradictory: some studies indicate that species richness of gall‐inducing insects increases as environments become hotter and drier, while others suggest that these factors have no effect. The role of plant species richness in determining species richness of gall‐inducing insects is also controversial. These apparent inconsistencies may prove to be due to the influence of soil fertility and the uneven distribution of gall‐inducing insect species among plant taxa. The current study tested hypotheses about determinants of gall‐inducing insect species richness in a way different to previous studies. The number of gall‐inducing insect species, and the proportion of species with completely enclosed galls (more likely to give protection against heat stress and desiccation), were measured in replicate plots at five locations along a 500‐km N‐S transect in the seasonal tropics of the Northern Territory, Australia. There is a strong temperature–rainfall gradient along this transect during the wet season. Plant species lists had already been compiled for each collection plot. All plots were at low elevation in eucalypt savannah growing on infertile soils. There was no evidence to suggest that hot, dry environments in Australia have more gall‐inducing insect species than cooler, wetter environments, or that degree of enclosure of galls is related to protecting insects from heat stress and desiccation. The variable number of gall‐inducing insect species on galled plant species meant that plant species richness did not influence gall species richness. Confirmation is still required that low soil fertility does not mask temperature–rainfall effects and that galls in the study region are occupied predominantly in the wet season, when the temperature–rainfall gradient is most marked.  相似文献   

5.
1. Hypersensitive reaction is an important type of induced defence by which the plant elicits a defence response to pathogens and insects. Hypersensitive reaction has been argued to be the most common plant resistance mechanism against insect herbivores that have intimate associations with their host plants. 2. The work reported here attempted to establish how important and widespread hypersensitive reaction might be against gall‐forming species across host taxa. 3. Hypersensitive reaction was the most important mortality factor against gall formation across host plant taxa in seven out of eight cases. 4. The number of insect galls correlated with the size of the leaves but module (leaf) size was a weak factor influencing the incidence of plant hypersensitive reaction to galling. 5. Insect galls and hypersensitive reactions occurred in genetically distant as well as geographically widespread host plant taxa.  相似文献   

6.
Summary Five hypotheses were invoked to account for variation in galling species number per location on plants of different structural complexity, namely herbs, shrubs, and trees, both in Brazil and USA. The hypotheses were: 1) the altitudinal/latitudinal gradient hypothesis; 2) the harsh environment hypothesis; 3) the plant species richness hypothesis; 4) the host plant area hypothesis; 5) the plant structural complexity hypothesis. The altitudinal and the harsh environment hypotheses were correlated and supported with sample data in both localities, with increasing gall species number as altitude/latitude declined and as sites became hotter and drier. The two hypotheses were separated by studying riparian sites and dry hillside sites at the same elevation in Arizona. Galling species frequency was higher in dry sites than in riparian sites, supporting the harsh environment hypothesis. Of the five hypotheses tested only the harsh environment hypothesis predicted that galling insect species number should vary in response to environmental variables such as moisture and temperature. Temperate shrubs supported more galling species than did other plant types, both in dry and mesic sites. The overall difference between galling species richness for tropical and temperate latitudes was not statistically significant. Free-feeding insect herbivore species exhibited the opposite pattern of species richness to gallers, being more speciose in riparian sites. The present study corroborates the hypothesis that the gall forming habit is an adaptation to harsh or stressful environments, and we describe for the first time broad scale geographical patterns in galling insect species richness.  相似文献   

7.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   

8.
Gall-inducing insects seem to have a diversity pattern distinct from the usual latitudinal decrease in species, with more species occurring in xeric environments instead. Many questions regarding galler diversity over geographical scales remain unanswered: for example, little is known about beta diversity, and the role super host plants play in local/regional richness. Our aim was to compare galling insect and host plant diversity in different biogeographical regions, but under similar environmental conditions. We sampled short stature coastal woodlands on sandy soils of the Atlantic coast in both USA (Florida) and Brazil (Rio Grande do Sul, RS), between 25° and 30° latitude. Little-used 200-m long trails were searched during 90 min for galls; there were four trails in USA and five in Brazil. Gall functional traits (galled plant organ, gall shape and colour) proportions were not different between Florida and RS. Local galling and host plant species richness also did not differ, and neither did regional galling diversity. The beta diversity pattern, however, was distinct: sites in Florida have more similar galling faunas than sites in RS. Common diversity patterns indicate common environmental biotic (plant diversity, vegetation structure) and abiotic (climate, soil) factors might be contributing to these similar responses. As Brazilian sites are in the Atlantic forest hotspot, a high galling insect beta diversity might be caused by a higher heterogeneity at larger scales—sample-based rarefaction curves were ascending for Brazil, but not for USA. Myrtaceans were super hosts in Brazil, but not in Florida, where oaks take up this role.  相似文献   

9.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

10.
Many hypotheses have been proposed to explain diversity patterns of galling insects. However, there are contradictory evidences on the evolutionary and ecological factors responsible for the trends. Furthermore, questions such as arthropod seasonality, sampling sufficiency and sampling team experience have been almost ignored. This study records galling arthropod diversity while paying attention to these questions. Seasonal sampling of galling arthropods and host plants were conducted in a humid subtropical forest of southern Brazil. Four transects were sampled twice per season, with two persons searching the vegetation for galls during 1h30min. After 96h.persons of sampling, 130 gall morphotypes on 84 species of host plants were recorded. An analysis of the numbers of galls and gall morphotypes found per transect along time showed that sampling team experience influences galler richness results and the interpretation of galler seasonality patterns. Different species had distinct seasonal patterns. Galling arthropod richness was bound to plant richness. Our results suggest that sampling team experience is an important factor that must be explicitly considered, as well as seasonality patterns of different galling species, at least for tropical/subtropical areas. Although sampling sufficiency was not reached, fauna heterogeneity at small spatial scales seems substantial: despite the proximity of the sampled transects (500 m), they harboured significantly specific faunas. This work adds to the literature records suggesting that both plant richness and specific composition of the vegetation have a strong influence on galler richness at least for local scales.  相似文献   

11.
The aim of this study was to (i) measure differences in species richness between edge habitats versus interior habitats, or more precisely the edge effect, and (ii) test the species–area relationship for gall-forming insects in natural forest patches in a Brazilian floodplain (Pantanal of Mato Grosso do Sul). These patches are regionally known as capões, basically composed of woody vegetation. Twenty-seven patches were surveyed. In each patch two transects were conducted for gall sampling. One transect encircled the patches while the other was conducted in the interior of the patch, totaling 54h of sampling. Host plant and galling insect species composition differed quite characteristically between the edge and the interior of patches, but galling insect richness did not. When insect gall richness was expressed as the ratio between insect gall and host plant richness (gall per plant ratio), a weak species–area relationship was found. Our results suggest that the number of galling insects per individual plant is not affected by the size of the patch. Despite these results, the natural forest patches found in this region seem well suited for long-term studies addressing species–area relationships. With regard to herbivorous insects, these studies should be combined with research on host plant dynamics during flooding and dry seasons.  相似文献   

12.
Evidence for long-distance, chemical gall induction by an insect   总被引:2,自引:0,他引:2  
Abstract We report that a chemical stimulus from a herbivore, a galling insect, changes plant morphology and physiology to benefit the herbivore. Previous studies could not determine whether insect galls are induced by mechanical or chemical stimuli because feeding and oviposition both occurred at the site of gall formation. We report that the mouthparts of a spruce‐galling insect, Adelges cooleyi, were inserted in stem phloem cells far from induced galls, that tissues between mouthparts and galls appeared normal, and that the ability to initiate galls was inversely correlated with distance from buds (potential gall sites). Thus the effects of chemical stimuli were unambiguously separated from any mechanical influence of probing stylets or ovipositors. Our results strongly suggest that galls were induced by a chemical stimulus transported to buds via vascular tissue and that its efficacy was dose‐dependent.  相似文献   

13.
A basic question in insect–plant interactions is whether the insects respond to, or regulate plant traits, or a complex mixture of the two. The relative importance of the directions of the influence in insect–plant interactions has therefore been articulated through both the plant vigor hypothesis (PVH) and the resource regulation hypothesis (RRH). This study tested the applicability of these hypotheses in explaining the interactions between Parthenium hysterophorus L. (Asteraceae) and its stem‐galling moth, Epiblema strenuana Walker (Lepidoptera: Tortricidae). Parthenium plants exposed to galling were sampled at three sites in north Queensland, Australia, over a 2‐year period, and the relationship between gall abundance and plant vigor (plant height, biomass, flowers per plant, and branches per plant) was studied. To test the predictions of PVH and RRH, the vigor of parthenium plants protected from galling using insecticides was compared to galled plants and plants that escaped from galling. The vigor of ungalled plants was less than the vigor of galled plants. The higher plant vigor in galled plants was not due to galling, as was evident from insecticide exclusion trials. The insect seemed to preferentially gall the more vigorous plants. These findings support the predictions of the PVH and are contrary to those of RRH. Since gall abundance is linked to plant vigor, galling may have only a limited impact on the vigor of parthenium. This has implications for weed biological control. If the objective of biological control is to regulate the population of a plant by a galling insect, a preference for more vigorous plants by the insect is likely to limit its ability to regulate plant populations. This may explain the paucity of successes against biocontrol of annual weeds using gall insects.  相似文献   

14.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

15.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

16.
Abstract.  1. The nutrition hypothesis for the adaptive nature of galls states that gall-inducing insects control the nutrient levels in galls to their own benefit. Although the nutrition hypothesis is widely accepted, there have been few empirical tests of this idea.
2. A novel method is presented for testing the nutrition hypothesis that links manipulation of gall nutrient levels by the gall inducer to herbivore performance. The effects of adaptation and nutritional advantage are separated by using a herbivore that is adapted to a host plant susceptible to galling but one which never enters the gall environment.
3.  Hellinsia glenni (Cashatt), a plume moth (Pterophoridae) and one of its host plants provide an excellent system for testing the nutrition hypothesis because H. glenni larvae feed internally on the relatively nutrient-poor stems of a goldenrod, Solidago gigantea , but do not venture into the nutrient-rich galls induced on that plant by a tephritid fly, Eurosta solidaginis . The nutrition hypothesis was tested by transplanting early-instar H. glenni larvae into galls and stems of S. gigantea to determine if the larvae transplanted to galls would perform better compared with those larvae transplanted to stems.
4. The results support the nutrition hypothesis for the adaptive nature of galls. Hellinsia glenni achieved greater final mass in the gall environment compared with the final mass larvae achieved in the stem environment. There was also evidence that the quality of gall tissue is controlled by the gall inducer, which has not been previously demonstrated for mature E. solidaginis galls.  相似文献   

17.
The plant richness hypothesis (PRH) is used to explain herbivorous insect richness based on the number of plant species, predicting a positive relationship. However, the influence of plant richness on insect distribution can become stronger with greater levels of specialization of herbivores. In this meta-analysis, I tested whether there is any difference in the correlation force recorded between studies that investigated endophagous versus exophagous herbivores, and galling versus non-galling guilds, in order to determine whether more specialized groups have a stronger relationship. Furthermore, I calculated whether effect sizes were homogeneous between galling studies carried out at local and regional scales, and between tropical and temperate regions. A total of 52 correlations were analyzed between plant species richness and herbivore species richness, with 18 correlations derived from galling herbivores and 34 from non-galling herbivores. The effect sizes were significant and positive in all studies, being higher for endophages than for exophages, and for galling than for non-galling studies. These results provide evidence that groups of insects with a higher level of host specialization and specificity (e.g., endophagous and galling) exhibit a greater dependence on plant richness. There was no difference in effect sizes for galling studies between the local and regional level or between tropical and temperate groups. Despite the large variability found for galling studies, effect sizes were consistent independently of climatic region and latitudinal variation. These results suggest that the PRH for galling insects can be generalized to most ecosystem and vegetation types.  相似文献   

18.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

19.
Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae), some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes), Myrtaceae (23) and Fabaceae (22). In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon.  相似文献   

20.
Questions: How does the abundance and richness of plant assemblages with different functional (regeneration and nutrient acquisition) traits vary with fire regime, moisture availability and substrate fertility? What is the role of different functional traits in maintaining plant diversity under changing environmental conditions in seasonally dry and fire‐prone environments? Location: Southwest Western Australia. Methods: Plant species abundance and soil nutrients were determined at 16 forest sites with variable fire histories across an aridity gradient. All plant species were classified based on their functional traits as (1) perennial or annual, (2) ectomycorrhizal, arbuscular mycorrhizal, ericoid mycorrhizal, orchid mycorrhizal, proteoid or other non‐mycorrhizal, (3) resprouters or seeder, and (4) nitrogen fixer or non‐fixer. We used a multivariate (fourth‐corner) technique to simultaneously test the significance and direction of the relationship between each of these traits and fire frequency, fire interval length, aridity, and soil N, P and C fractions. Results: The functional response of the vegetation to fire regime was minor and restricted to annual species, which comprised only ~4% of taxa. Proteoid and ectomycorrhizal species dominated over species with arbuscular and orchid mycorrhizal roots, N‐fixers dominated over non‐fixers, and seeders dominated over resprouters when N fertility was low but organic labile P was high. Further, proteoid and ectomycorrhizal species richness increased with aridity, while arbuscular mycorrhizal species richness decreased. Conclusions: While the functional composition of southwest Australian vegetation is largely insensitive to changes in fire regime, nutrient acquisition and, to a lesser extent, regeneration traits provide mechanisms for the vegetation community to adjust to changes in resource availability. Thus, diversity responses to environmental change in seasonally dry and fire‐prone ecosystems are likely to be primarily mediated by the composition of nutrient acquisition traits in the vegetation community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号