首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fragmentation of landscapes produces habitat gaps where the distance between visual landmarks may exceed the perceptual range of a species and impose navigational constraints. We estimated the visual perceptual range of the Australian sleepy lizard, Tiliqua rugosa, by releasing individuals in the centre of a cleared arena in high temperature conditions, with a 0.5-m-high bush placed either 10, 20 or 30 m from the release site. Lizards were more likely to locate those bushes and shelter under them when they were closer, and no lizards found a bush at 30 m. In addition, lizards were less likely to move from the release point when bushes were at 30 m than when they were at the two closer distances. These data suggest that for sleepy lizards the perceptual range for a 0.5-m-high bush is about 20 m. In the uncleared chenopod shrub-land where these lizards live, suitable shelter bushes are an average of 10.5 m from any point in their home range, well within their perceptual range.  相似文献   

2.
Refuges provide shelter from predators, and protection from exposure to the elements, as well as other fitness benefits to animals that use them. In ectotherms, thermal benefits may be a critical aspect of refuges. We investigated microhabitat characteristics of refuges selected by a heliothermic scincid lizard, Carlia rubrigularis, which uses rainforest edges as habitat. We approached lizards in the field, simulating a predator attack, and quantified the refuge type used, and effect of environmental temperatures (air temperature, substrate temperature and refuge substrate temperature) on the amount of time skinks remained in refuges after hiding (emergence time). In respone to our approach, lizards were most likely to flee into leaf litter, rather than into rocks or woody debris, and emergence time was dependent on refuge substrate temperature, and on refuge substrate temperature relative to substrate temperature outside the refuge. Lizards remained for longer periods in warmer refuges, and in refuges that were similar in temperature to outside. We examined lizard refuge choice in response to temperature and substrate type in large, semi‐natural outdoor enclosures. We experimentally manipulated refuge habitat temperature available to lizards, and offered them equal areas of leaf litter, woody debris and rocks. When refuge habitat temperature was unmanipulated, lizards (85%) preferred leaf litter, as they did in the field. However, when we experimentally manipulated the temperature of the leaf litter by shading, most skinks (75%) changed their preferred refuge habitat from leaf litter to woody debris or rocks. These results suggest that temperature is a critical determinant of refuge habitat choice for these diurnal ectotherms, both when fleeing from predators and when selecting daytime retreats.  相似文献   

3.
A major question for understanding the ecology of parasite infections and diseases in wildlife populations concerns the transmission pathways among hosts. Network models are increasingly used to model the transmission of infections among hosts – however, few studies have integrated host behaviour and genetic relatedness of the parasites transmitted between hosts. In a study of the Australian sleepy lizard Tiliqua rugosa and its three‐host ixodid tick (Bothriocroton hydrosauri), we asked if patterns of genetic relatedness among ticks were best explained by spatial proximity or the host transmission network. Using synchronous GPS locations of over 50 adult lizards at 10 min intervals across the three‐month activity period, over 2 years, we developed two alternative parasite transmission networks. One alternative was based on the spatial proximity of lizards (at the centre of their home ranges), and the other was based on the frequency of asynchronous shared refuge use between pairs of lizards. In each year, adult ticks were removed from lizards and their genotypes were determined at four polymorphic microsatellite loci. Adult ticks collected from the same host were more related to each other than ticks from different hosts. Similarly, adult ticks collected from different lizards had a higher relatedness if those lizards had a shorter path length connecting them on each of the two networks we explored. The predictors of tick relatedness differed between years. In the first year, the asynchronous shared refuges network was the stronger predictor of tick relatedness, whereas in year two, the spatial proximity‐based network was the stronger predictor of tick relatedness. We speculate on how changing environmental conditions might change the relative importance of alternative processes driving the transmission of parasites.  相似文献   

4.
Long‐term monogamy is most prevalent in birds but is also found in lizards. We combined a 31‐year field study of the long‐lived, monogamous Australian sleepy lizard, Tiliqua rugosa, with continuous behavioural observations through GPS data logging, in 1 yr, to investigate the duration of pair bonds, rates of partner change and whether either the reproductive performance hypothesis or the mate familiarity hypothesis could explain this remarkable long‐term monogamy. The reproductive performance hypothesis predicts higher reproductive success in more experienced parents, whereas the mate familiarity hypothesis suggests that effects of partner familiarity select for partner retention and long‐term monogamy. Rates of partner change were below 34% over a 5‐yr period and most sleepy lizards formed long‐term pair bonds: 31 partnerships lasted for more than 15 yr, 110 for more than 10 yr, and the recorded maximum was 27 yr (ongoing). In the year when we conducted detailed observations, familiar pairs mated significantly earlier than unfamiliar pairs. Previous pairing experience (total number of years paired with previous partners) had no significant effect. Early mating often equates to higher reproductive success, and we infer that is the case in sleepy lizards. Early mating of familiar pairs was not due to better body condition. We propose two suggestions about the proximate mechanisms that may allow familiar pair partners to mate earlier than unfamiliar partners. First, they may have improved coordination of their reproductive sexual cycles to reach receptivity earlier and thereby maximise fertilisation success. Second, they may forage more efficiently, benefiting from effective information transfer and/or cooperative predator detection. Those ideas need empirical testing in the future. Regardless of the mechanism, our observations of sleepy lizard pairing behaviour support the mate familiarity hypothesis, but not the reproductive performance hypothesis, as an explanation for its long‐term monogamous mating system.  相似文献   

5.
Lateralization is the function specialization between left and right brain hemispheres. It is now ascertained in ectotherms too, where bias in eye use for different tasks, i.e., visual lateralization, is widespread. The lateral eye position on the head of ectotherm animals, in fact, allows them to observe left/right stimuli independently and allows lateralized individuals to carry out left and right perceived tasks at the same time. A recent study conducted on common wall lizards, Podarcis muralis, showed that lizards predominantly monitor a predator with the left eye while escaping. However, this work was conducted in a controlled laboratory setting owing to the difficulty of carrying out lateralization experiments under natural conditions. Nevertheless, field studies could provide important information to support what was previously found in the laboratory and demonstrate that these traits occur in nature. In this study, we conducted a field study on the antipredatory behavior of P. muralis lizards. We simulated predatory attacks on lizards in their natural environment. We found no lateralization in the measure of eye used by the lizard to monitor the predator before escaping from it, but the eye used was probably determined by the relative position of the lizard and the predator just before the attack. This first eye used did not affect escape decisions; lizards chose to escape toward the nearest refuge irrespective of whether it was located to the lizard’s left or right side. However, once they had escaped to a refuge, lizards had a left eye–mediated bias to monitor the predator when first emerging from the refuge, and this bias was likely independent of other environmental variables. Hence, these field findings support a left eye–mediated observation of the predator in P. muralis lizards, which confirms previous findings in this and other species.  相似文献   

6.
Understanding space use remains a major challenge for animal ecology, with implications for species interactions, disease spread, and conservation. Behavioural type (BT) may shape the space use of individuals within animal populations. Bolder or more aggressive individuals tend to be more exploratory and disperse further. Yet, to date we have limited knowledge on how space use other than dispersal depends on BT. To address this question we studied BT-dependent space-use patterns of sleepy lizards (Tiliqua rugosa) in southern Australia. We combined high-resolution global positioning system (GPS) tracking of 72 free-ranging lizards with repeated behavioural assays, and with a survey of the spatial distributions of their food and refuge resources. Bayesian generalized linear mixed models (GLMM) showed that lizards responded to the spatial distribution of resources at the neighbourhood scale and to the intensity of space use by other conspecifics (showing apparent conspecific avoidance). BT (especially aggressiveness) affected space use by lizards and their response to ecological and social factors, in a seasonally dependent manner. Many of these effects and interactions were stronger later in the season when food became scarce and environmental conditions got tougher. For example, refuge and food availability became more important later in the season and unaggressive lizards were more responsive to these predictors. These findings highlight a commonly overlooked source of heterogeneity in animal space use and improve our mechanistic understanding of processes leading to behaviourally driven disease dynamics and social structure.  相似文献   

7.
Rising environmental temperatures have become a global threat for ectotherms, with the increasing risk of overheating promoting population declines. Flexible thermoregulatory behavior might be a plausible mechanism to mitigate the effects of extreme temperatures. We experimentally evaluated thermoregulatory behavior in the bunchgrass lizard, Sceloporus aeneus, at three different environmental temperatures (25, 35 and 45 °C) both with and without a thermal refuge. We recorded themoregulatory behaviors (body posture and movement between hot and cold patches) and compared individual lizards across all experimental temperature and shelter combinations. Behavioral thermoregulation in S. aeneus was characterized by the expression of five body postures, whose frequencies varied based on environmental temperature and microthermal conditions. Behavioral responses allowed lizards to maintain a mean body temperature <40 °C, the critical thermal maximum for temperate species, even at extreme environmental temperatures (45 °C). Although S. aeneus express an array of behavioral postures that provide an effective mechanism to cope with elevating temperatures, the presence of a thermal refuge was important to better achieve this. Together, our study offers a novel method to evaluate microhabitat preference that encompasses both behavioral observations and time-space analysis based on the ambient thermal distribution, a consideration that can aid in the formulation of more accurate predictions on ectotherm vulnerability related to increasing global environmental temperatures.  相似文献   

8.
Cost‐benefit models of escape behaviour predict how close a prey allows a predator to approach [flight initiation distance (FID)] based on cost of not fleeing (predation risk) and cost of fleeing (loss of opportunities). Models for FID have been used with some success to predict distance fled (DF). We studied effects of foraging opportunity cost of fleeing and examined differences between age‐sex groups in the omnivorous Balearic Lizard, Podarcis lilfordi. Balearic lizards forage on the ground for invertebrate prey and climb the thistle Carlina corymbosa to forage on its inflorescences. We studied escape behaviour in three experimental groups, with human beings as simulated predators: lizard foraging above ground on C. corymbosa, foraging on the ground away from thistles and on the ground with cut inflorescences. Flight initiation distance was shorter for lizards with cut inflorescences than for (1) lizards above ground due to the greater risk above ground due to conspicuousness of black lizards on yellow flowers; and (2) lizards on ground away from flowers due to the cost of leaving while feeding. The only age‐sex difference was slightly greater FID for adult males than subadults, presumably because larger adult males are more likely to be attacked by predators. Other potential factors affecting this difference are discussed. Experimental group and age‐sex group did not interact for FID or DF. Because lizards foraging on inflorescences above ground fled to the base of the plants to refuge provided by spiny thistle leaves, their DF was shorter than in the other groups, which fled across the ground, usually without entering refuge. DF did not differ between groups on the ground or among age‐sex groups. The predicted shorter DF for lizards with cut inflorescences than on ground without inflorescences did not occur. We hypothesize that the opportunity cost was small due to the abundance of blooming thistles and that DF may be less sensitive to opportunity cost than FID.  相似文献   

9.
Many natural processes in the riparian cottonwood (Populus deltoides) forest of the Middle Rio Grande (MRG) in the southwestern United States have been disrupted or altered, allowing non‐native plants such as saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) to establish. We investigated reptilian responses to restoration efforts by sampling communities of lizards at 12 study sites invaded by non‐native plants along the MRG in New Mexico for 7 years (2000–2006). Sites within three regions were randomly assigned to one of the three treatments to remove non‐native plants and woody debris, or as untreated controls. We used pitfall and funnel traps to capture, mark, and release lizards from June to September. Principal components analysis of 15 vegetation variables identified five factors that best explained variation among sites before and after removal of non‐native plants. Relative abundances for four of six common species of lizards were associated with vegetation characteristics that significantly changed after plant removal. Species were either positively associated with the more open, park‐like understory found in treated sites or negatively associated with debris heaps and thickets of non‐native plants found in untreated sites. Eastern fence lizards (Sceloporus consobrinus) and New Mexico whiptails (Aspidoscelis neomexicana) increased in relative abundance after non‐native plants were removed. Overall, removal of non‐native plants seems beneficial, or at least is non‐damaging, to lizard communities of the MRG forest. Providing information on habitat associations of lizard communities will help land managers balance management objectives with other considerations, such as providing important wildlife habitat.  相似文献   

10.
Prey often respond to predator presence by increasing their use of refuges, but because this strategy may be costly, the decision regarding when to come out from a refuge should be optimized. The loss of foraging opportunities may be one of the main costs when safer microhabitats (i.e. refuges) are also the poorest in terms of their foraging profitability. We present the results of an experimental field study to test whether emergence times from a refuge of the Iberian rock lizard, Lacerta monticola, vary as a function of expected foraging opportunities and level of satiation of the lizard. As predicted, short‐term fluctuations in availability of food influenced emergence times; when a lizard had just detected some food in the recent past, emergence times decreased greatly, because the loss of opportunities for foraging increased costs of refuge use. Furthermore, the characteristics and success of the encounter with food, nutritional state of lizards, and the added possibility of capturing new food items influenced the duration of hiding times. Therefore, foraging requirements and avoidance of predators may be conflicting demands that L. monticola lizards balance by modifying the duration of time spent in refuges.  相似文献   

11.
Prey often respond to predator presence by increasing theiruse of refuges. However, because the use of refuges may entailseveral costs, the decision of when to come out from a refugeshould be optimized. In some circumstances, if predators remainwaiting outside the refuge and try new attacks or if predator density increases, the prey may suffer successive repeated attacksin a short time. Successive attacks may represent an increasein the risk of predation, but the costs of refuge use alsomay increase with time spent in the refuge. Thus, prey shouldmake multiple related decisions on when to emerge from the refuge after each new attack. We simulated in the field repeatedpredatory attacks to the same individuals of the lizard Lacertamonticola and specifically examined the variation in successivetimes to emergence from a refuge under different thermal conditions(i.e., different costs of refuge use). The results showed thatrisk of predation but also thermal costs of refuge use affectedthe emergence decisions. Lizards increased progressively theduration of time spent in the refuge between successive emergencetimes when the costs of refuge use were lower, but tended tomaintain or to decrease the duration of time spent in the refugebetween successive emergence times when cost of refuge useincreased. Additionally, lizards that entered the refuge withhigher body temperatures had overall emergence times of longer duration. Optimization of refuge use and flexibility in theantipredator responses might help lizards to cope with increasedpredation risk without incurring excessive costs of refugeuse.  相似文献   

12.
ABSTRACT The ecological effects of land-use practices on reptiles, especially endangered or threatened species, are of conservation and scientific interest. We describe the effects of rotational livestock grazing and prescribed winter burning on resources and survival of the Texas horned lizard (Phrynosoma cornutum) during the summers of 1998 to 2001 in southern Texas, USA. We evaluated survival rates of Texas horned lizards (n = 111) on 6 study sites encompassing 5 different burning and grazing treatments. We also measured indices of cover (i.e., vegetation) and food abundance (i.e., harvester ants [Pogonomyrmex rugosus]). We telemetered and relocated adult lizards daily. We divided the study into 2 seasons, spring (15 Apr–30 Jun) and summer (1 Jul–15 Aug), corresponding to the relative activity of horned lizards. Winter burning provided an increase in food resources and led to increased survival of Texas horned lizards in the second growing season after fire, but grazing-induced changes in vegetation cover reduced survival, likely by increasing lizard vulnerability. Fire and grazing reduced litter and increased bare ground and forb cover but did not affect woody vegetation. Ant activity was greater in burned sites and varied with grazing level, season, and year. Summer survival functions of horned lizards varied by burning treatment, with higher survival observed on burned sites in the second year after burning. Survival rates were ordered from highest in ungrazed sites to lowest in heavily grazed sites. We recognize the limitations of our work resulting from a lack of spatial replication of treatments. However, our mensurative study provides fertile ground for future hypothesis testing regarding the effects of land management on shrubland and grassland reptiles. We propose that future studies focus on the population consequences of variation in burn frequency, burn timing, and grazing intensity.  相似文献   

13.
Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground‐dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) and vegetation parameters at northern bobwhite (Colinus virginianus; hereafter bobwhite) adult and brood locations as well as at stratified random points in the study area. On the hottest days (i.e., ≥39°C), adults and broods obtained thermal refuge using tall woody cover that remained on average up to 16.51°C cooler than random sites on the landscape which reached >57°C. We also found that refuge sites used by bobwhites moderated thermal conditions by more than twofold compared to stratified random sites on the landscape but that Tbb commonly exceeded thermal stress thresholds for bobwhites (39°C) for several hours of the day within thermal refuges. The serendipitous high heat conditions captured in our study represent extreme heat for our study region as well as thermal stress for our study species, and subsequently allowed us to assess ground‐dwelling bird responses to temperatures that are predicted to become more common in the future. Our findings confirm the critical importance of tall woody cover for moderating temperatures and functioning as important islands of thermal refuge for ground‐dwelling birds, especially during extreme heat. However, the potential for extreme heat loads within thermal refuges that we observed (albeit much less extreme than the landscape) indicates that the functionality of tall woody cover to mitigate heat extremes may be increasingly limited in the future, thereby reinforcing predictions that climate change represents a clear and present danger for these species.  相似文献   

14.
The use of lizards as model organisms in ecological studies is based on their success in occupying a great diversity of habitats, and some species are closely tied to the environment, which is disadvantaged by the legislation of several countries concerning land use. Our aim was to relate lizard species distribution patterns in rainforest environments to variation in environmental gradients, and provide ecologically based metrics for establishing buffer zones around streams. Lizards were sampled three times in 41 standardised transects near Manaus, Brazil, only in dry season, with Time Limited Visual Search associated with raking through leaf litter. We recorded 20 species from 10 families and used non‐metric multidimensional scaling to reduce the dimensionality of quantitative and qualitative compositions of species. Multiple linear regression models indicated that the environmental gradients distance to nearest stream, extent of canopy openness, vegetation density and slope did not significantly influence assemblage species distribution, with an indication of effect of litter depth. By means of piecewise linear regression, the use of riparian zone was estimated at ~190 m from quantitative species composition and ~211 m from qualitative species composition. Five species occurred only in the riparian zone. Our results suggest that conservation of the entire riparian lizard assemblage in Amazonian rainforest is likely to require protection of at least a 211 m buffer on either side of streams.  相似文献   

15.
Conservation management requires knowledge of how a target species interacts with other species. Some relatively common species can modify the environment to the advantage of rarer, endangered species. Thus, local enhancement of those common species can positively influence remaining populations of the rarer species. The endangered pygmy bluetongue lizard Tiliqua adelaidensis inhabits burrows that are constructed by lycosid and mygalomorph spiders. We recorded 490 burrows in a 1 ha plot at the end of one season, and then observed at regular intervals the formation and loss of burrows, and the changes in occupancy status of each burrow over the next season. We found spiders in 94% of all newly constructed burrows and deduced that they had built the burrows. We found no evidence that lizards dug new burrows or deepened existing burrows. The numbers of both lizards and spiders in the burrows declined over the spring and summer, with lizards moving from their burrows more often early in the season than later. However, there was no strong trend for lizards to replace spiders in burrows. In fact, lizards tended to occupy deeper burrows than spiders, suggesting little negative impact of lizards on spiders. However, spiders had a positive impact on lizards by providing the refuge burrows central for lizard survival. Although lizards readily accept artificial burrows, long-term conservation for the lizards must include viable spider populations to maintain a supply of suitable burrow refuges.  相似文献   

16.
Some aspects of escape predicted by theoretical models are intended to apply universally. For example, flight initiation distance (distance between an approaching predator and prey when escape begins) is predicted from predation risk and the costs of escaping. Escape tactics and refuge selection are not currently predicted by theoretical models, but are expected to vary with structural features of the habitat. One way of studying such variation is to compare aspects of antipredatory behavior among sympatric species that differ in habitat or microhabitat use. In an assemblage of lizards in northwestern Namibia, we conducted experiments to test predictions of escape theory for three risk factors in representatives of three families and observed escape tactics in additional species. As predicted by escape theory, flight initiation distance increased with directness of a predator's approach and predator speed in Agama planiceps, Mabuya acutilabris, and Rhotropus boultoni, and with distance from refuge in M. acutilabris. As predicted by theory, the probability of entering refuge increased with risk in R. boultoni. All available data indicate that flight initiation distance and refuge entry by lizards conform to theoretical predictions. Escape tactics varied greatly as a function of habitat type: (1) arboreal species fled up and around trees and sometimes entered tree holes; (2) saxicolous species used rock crevices as refuges, but differed in tactics prior to entering refuges; and (3) terrestrial species fled into bushes or other vegetation, often to the far sides of them. Some M. acutilabris entered small animal burrows or buried themselves in sand beneath bushes. Escape tactics varied even among congeners in Mabuya, highlighting the important effect of habitat structure on them. Although habitat partitioning has traditionally been viewed as favoring species coexistence, an interesting by‐product appears to be structuring of escape tactics in lizard communities.  相似文献   

17.
Mammals that build extensive open burrow systems are often classified as ecosystem engineers, since they have the potential to modulate the availability of resources for themselves and other organisms. Lizards may benefit from the heterogeneity created by these structures, especially if coupled with an increased offer of sites for refuge and thermoregulation. However, information about these engineering effects by burrowing animals is scarce. We investigated the influence of European rabbit burrows on several parameters of a Mediterranean lizard community (abundance, density, diversity and body condition) in three different habitats (open pastures, holm oak and scrub patches). We found that lizards were positively associated with burrows, and that burrows determined lizard presence at otherwise unfavourable habitats. Moreover, community parameters such as density and species richness were higher in sites with burrows. Burrows influenced lizard species in different ways, and were also relevant for other Mediterranean vertebrates, as revealed by questionnaires to experts. We also explored the possible resources provided by burrows for lizards. Warrens offer relatively abundant prey and appropriate retreat sites for refuge and thermoregulation. Warrens may have further implications within the ecosystem, acting as stepping stones, allowing lizards to reach otherwise inaccessible habitat patches. This study shows that European rabbit warrens have a positive influence on lizard density and diversity, and confirms the role of rabbits as ecosystem engineers. This reinforces the need for appropriate conservation measures for rabbits, especially given their threatened status in the Iberian Peninsula. Furthermore, our study highlights that taking into account the influence of engineering activities increases our awareness of species interactions, and may translate into more adequate conservation measures for the preservation of biodiversity.  相似文献   

18.
The same display may be used in different contexts to convey different messages, or may have other, non-signaling functions. Several lines of evidence suggest that vertical tail curling, a previously documented social display in the lizard Leiocephalus carinatus , has antipredatory functions that may include pursuit deterrence and deflection of attacks from the body to the tail, which can be autotomized. An antipredatory role of tail curling is suggested by its more frequent occurrence when a predator is approaching than moving away, its greater frequency and intensity when a lizard is approached by a predator than when it moves spontaneously, and its greater frequency when the predator approaches directly rather than on a path bypassing the lizard. Evidence is presented contradicting use of tail curling for flash concealment or as an alarm signal to conspecifics. A pursuit-deterrent function of tail curling is suggested by its (1) more frequent use by lizards close to a refuge than those further from a refuge, (2) greater frequency during direct approaches by predators, and (3) much greater frequency when a predator is far enough away for pursuit to be deterred than when the predator is close enough to pose a high risk of capture. Lizards fled into a refuge without tail curling when the predator was very close, but often stopped outside a refuge while displaying the curled tail when the predator was farther away. Tail curling also may deflect attacks to the autotomizable tail, as suggested by its occurrence during spontaneous movements when no predator is approaching and by the high frequency of completely uncurled tails among individuals under bushes. The role of the tail in autotomy may facilitate evolution of pursuit-deterrent signals involving the tail.  相似文献   

19.
The spatial distribution of plants (and other primarily sessile organisms) depends on the interplay between their ecological requirements and the spatial template set before, during, and after the dispersal process. In the case of animal‐dispersed plants, the spatial characteristics of animal behaviour during the seed dispersal process are likely to leave a lasting imprint on plant distribution. Here, we hypothesize that the activity patterns of the frugivorous lizard Podarcis lilfordi directly influence the spatial distribution of the fleshy‐fruited shrub Daphne rodriguezii. To evaluate this hypothesis, we first analysed lizard activity, following radio‐tracked lizards during the plant's fruiting period, and identified its main determinants at several spatial scales of habitat aggregation (from 12.5 to 150 m). We hypothesised that lizard activity depends on differential habitat features explaining its territory use plus habitat preferences associated with each movement bout. In a second step, the most important determinants of lizard activity plus the variables describing habitat structure were used to predict the presence of adult and juvenile plants. Predictability of lizard activity (based on AUC and Pearson regression coefficients) was higher at broad spatial‐scales of habitat aggregation (75 m). The two best predictors of lizard activity were the habitat features of and the distance to the core area (defined as the area enclosing the 0.50 cumulative probability of lizard locations). Plant presence was best predicted by models based on a combination of lizard activity and habitat features at local spatial scales (1.5 m). Best models included habitat features and lizard activity for adult plants, and local‐scale habitat features, the proximity of adult plants and lizard activity for juveniles. In both cases, most plants (50–60%) were located at ‘optimal sites’ (both favourable for lizards and with adequate habitat features), whereas a small fraction of them (3–10%) were located at dispersal‐limited sites (i.e. with adequate habitat features but suboptimal for lizards). Our results thus suggest that the interplay between lizard activity and local habitat features determines the spatial patterns of juvenile‐plant presence and leaves a lasting signature on adult‐plant distribution.  相似文献   

20.
Foraging mode is a functional trait with cascading impacts on ecological communities. The foraging syndrome hypothesis posits a suite of concurrent traits that vary with foraging mode; however, comparative studies testing this hypothesis are typically interspecific. While foraging modes are often considered typological for a species when predicting foraging‐related traits or mode‐specific cascading impacts, intraspecific mode switching has been documented in some lizards. Mode‐switching lizards provide an opportunity to test foraging syndromes and explore how intraspecific variability in foraging mode might affect local ecological communities.Because lizard natural history is intimately tied to habitat use and structure, I tested for mode switching between populations of the Aegean wall lizard, Podarcis erhardii, inhabiting undisturbed habitat and human‐built rock walls on the Greek island of Naxos. I observed foraging behavior among 10 populations and tested lizard morphological and performance predictions at each site. Furthermore, I investigated the diet of lizards at each site relative to the available invertebrate community.I found that lizards living on rock walls were significantly more sedentary—sit and wait—than lizards at nonwall sites. I also found that head width increased in females and the ratio of hindlimbs to forelimbs in both sexes increased as predicted. Diet also changed, with nonwall lizards consuming a higher proportion of sedentary prey. Lizard bite force also varied significantly between sites; however, the pattern observed was opposite to that predicted, suggesting that bite force in these lizards may more closely relate to intraspecific competition than to diet.This study demonstrates microgeographic variability in lizard foraging mode as a result of human land use. In addition, these results demonstrate that foraging mode syndromes can shift intraspecifically with potential cascading effects on local ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号