首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim J  Darley D  Buckel W 《The FEBS journal》2005,272(2):550-561
The hadBC and hadI genes from Clostridium difficile were functionally expressed in Escherichia coli and shown to encode the novel 2-hydroxyisocaproyl-CoA dehydratase HadBC and its activator HadI. The activated enzyme catalyses the dehydration of (R)-2-hydroxyisocaproyl-CoA to isocaprenoyl-CoA in the pathway of leucine fermentation. The extremely oxygen-sensitive homodimeric activator as well as the heterodimeric dehydratase, contain iron and inorganic sulfur; besides varying amounts of zinc, other metal ions, particularly molybdenum, were not detected in the dehydratase. The reduced activator transfers one electron to the dehydratase concomitant with hydrolysis of ATP, a process similar to that observed with the unrelated nitrogenase. The thus activated dehydratase was separated from the activator and ATP; it catalyzed about 10(4) dehydration turnovers until the enzyme became inactive. Adding activator, ATP, MgCl(2), dithionite and dithioerythritol reactivated the enzyme. This is the first demonstration with a 2-hydroxyacyl-CoA dehydratase that the catalytic electron is recycled after each turnover. In agreement with this observation, only substoichiometric amounts of activator (dehydratase/activator = 10 mol/mol) were required to generate full activity.  相似文献   

2.
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated by FldA, a (R)-phenyllactate CoA-transferase; followed by (ii) dehydration of phenyllactyl-CoA to cinnamoyl-CoA mediated by heterodimeric FldBC, a phenyllactyl-CoA dehydratase. Phenyllactate dehydratase requires initiation by ATP, MgCl2 and a reducing agent such as dithionite mediated by an extremely oxygen-sensitive initiator protein (FldI) present in the cell-free extract. All four genes coding for these proteins were cloned and shown to be clustered in the order fldAIBC, which shares over 95% sequence identity of nucleotide and protein levels with a gene cluster detected in the genome of the closely related Clostridium botulinum Hall strain A. FldA shows sequence similarities to a new family of CoA-transferases, which apparently do not form covalent enzyme CoA-ester intermediates. An N-terminal Strep II-Tag containing enzymatically active FldI was overproduced and purified from Escherichia coli. FldI was characterized as a homodimeric protein, which contains one [4Fe-4S]1+/2+ cluster with an electron spin S = 3/2 in the reduced form. The amino acid sequence as well as the chemical and EPR-properties of the pure protein are very similar to those of component A of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans (HgdC), which was able to replace FldI in the activation of phenyllactate dehydratase. Only in the oxidized state, FldI and component A exhibit significant ATPase activity, which appears to be essential for unidirectional electron transfer. Both subunits of phenyllactyl-CoA dehydratase (FldBC) show significant sequence similarities to both subunits of 2-hydroxyglutaryl-CoA dehydratase (HgdAB). The fldAIBC gene cluster resembles the hadAIBC gene cluster in the genome of Clostridium difficile and the hadABC,I genes in C. botulinum. The four subunits of these deduced 2-hydroxyacid dehydratases (65-81% amino acid sequence identity between the had genes) probably code for a 2-hydroxyisocaproate dehydratase involved in leucine fermentation. This enzyme could be the target for metronidazole in the treatment of pseudomembranous enterocolitis caused by C. difficile.  相似文献   

3.
S Chen  T D Lee  K Legesse  J E Shively 《Biochemistry》1986,25(19):5391-5395
We have identified the site labeled by arylazido-beta-alanyl-NAD+ (A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+) in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by microsequencing and fast atom bombardment mass spectrometry. This NAD+ photoaffinity analogue has been previously demonstrated to modify glyceraldehyde-3-phosphate dehydrogenase in a very specific manner and probably at the active site of the enzyme [Chen, S., Davis, H., Vierra, J. R., & Guillory, R. J. (1984) Biochem. Biophys. Stud. Proteins Nucleic Acids, Proc. Int. Symp., 3rd, 407-425]. The label is associated exclusively with a tryptic peptide that has the sequence Ile-Val-Ser-Asn-Ala-Ser-Cys-Thr-Thr-Asn. In comparison to the amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from other species, this peptide is in a highly conserved region and is part of the active site of the enzyme. The cysteine residue at position seven was predominantly labeled and suggested to be the site modified by arylazido-beta-alanyl-NAD+. This cysteine residue corresponds to the Cys-149 in the pig muscle enzyme, which has been shown to be an essential residue for the enzyme activity. The present investigation clearly demonstrates that arylazido-beta-alanyl-NAD+ is a useful photoaffinity probe to characterize the active sites of NAD(H)-dependent enzymes.  相似文献   

4.
Expression of six genes from two glutamate fermenting clostridia converted Escherichia coli into a producer of glutaconate from 2-oxoglutarate of the general metabolism (Djurdjevic, I. et al. 2010, Appl. Environ. Microbiol.77, 320-322). The present work examines whether this pathway can also be used to reduce 2-oxoadipate to (R)-2-hydroxyadipic acid and dehydrate its CoA thioester to 2-hexenedioic acid, an unsaturated precursor of the biotechnologically valuable adipic acid (hexanedioic acid). 2-Hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum, the key enzyme of this pathway and a potential radical enzyme, catalyzes the reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA. Using a spectrophotometric assay and mass spectrometry, it was found that (R)-2-hydroxyadipoyl-CoA, oxalocrotonyl-CoA, muconyl-CoA, and butynedioyl-CoA, but not 3-methylglutaconyl-CoA, served as alternative substrates. Hydration of butynedioyl-CoA most likely led to 2-oxosuccinyl-CoA, which spontaneously hydrolyzed to oxaloacetate and CoASH. The dehydratase is not specific for the CoA-moiety because (R)-2-hydroxyglutaryl-thioesters of N-acetylcysteamine and pantetheine served as almost equal substrates. Whereas the related 2-hydroxyisocaproyl-CoA dehydratase generated the stable and inhibitory 2,4-pentadienoyl-CoA radical, the analogous allylic ketyl radical could not be detected with muconyl-CoA and 2-hydroxyglutaryl-CoA dehydratase. With the exception of (R)-2-hydroxyglutaryl-CoA, all mono-CoA-thioesters of dicarboxylates used in this study were synthesized with glutaconate CoA-transferase from Acidaminococcus fermentans. The now possible conversion of (R)-2-hydroxyadipate via (R)-2-hydroxyadipoyl-CoA and 2-hexenedioyl-CoA to 2-hexenedioate paves the road for a bio-based production of adipic acid.  相似文献   

5.
Wilde C  Just I  Aktories K 《Biochemistry》2002,41(5):1539-1544
Exoenzyme C3stau2 from Staphylococcus aureus is a new member of the family of C3-like ADP-ribosyltransferases that ADP-ribosylates RhoA, -B, and -C. Additionally, it modifies RhoE and Rnd3. Here we report on studies of the structure-function relationship of recombinant C3stau2 by site-directed mutagenesis. Exchange of Glu(180) with leucine caused a complete loss of both ADP-ribosyltransferase and NAD glycohydrolase activity. By contrast, exchange of the glutamine residue two positions upstream (Gln(178)) with lysine blocked ADP-ribosyltransferase activity without major changes in NAD glycohydrolase activity. NAD and substrate binding of this mutant protein was comparable to that of the recombinant wild type. Exchange of amino acid Tyr(175), which is part of the recently described "ADP-ribosylating toxin turn-turn" (ARTT) motif [Han, S., Arvai, A. S., Clancy, S. B., and Tainer, J. A. (2001) J. Mol.Biol. 305, 95-107], with alanine, lysine, or threonine caused a loss of or a decrease in ADP-ribosyltransferase activity but an increase in NAD glycohydrolase activity. Recombinant C3stau2 Tyr175Ala and Tyr175Lys were not precipitated by matrix-bound Rho, supporting a role of Tyr(175) in protein substrate recognition. Exchange of Arg(48) and/or Arg(85) resulted in a 100-fold reduced transferase activity, while the recombinant C3stau2 double mutant R48K/R85K was totally inactive. The data indicate that amino acid residues Arg(48), Arg(85), Tyr(175), Gln(178), and Glu(180) are essential for ADP-ribosyltransferase activity of recombinant C3stau2 and support the role of the ARTT motif in substrate recognition of RhoA by C3-like ADP-ribosyltransferases.  相似文献   

6.
It has been proposed that the chiral inversion of the 2-arylpropionic acids is due to the stereospecific formation of the (-)-R-profenyl-CoA thioesters which are putative intermediates in the inversion. Accordingly, amino acid conjugation, for which the CoA thioesters are obligate intermediates, should be restricted to those optical forms which give rise to the (-)-R-profenyl-CoA, i.e., the racemates and the (-)-(R)-isomers. We have examined this problem in dogs with respect to 2-phenylpropionic acid(2-PPA). Regardless of the optical configuration of 2-phenylpropionic acid administered, the glycine conjugate was the major urinary metabolite and this was shown to be exclusively the (+)-(S)-enantiomer by chiral HPLC. Both (-)-(R)- and (+)-(S)-2-phenylpropionic acid were present in plasma after the administration of either antipode, and further evidence of the chiral inversion of both enantiomers was provided by the presence of some 25% of the opposite enantiomer in the free 2-phenylpropionic acid and its glucuronide excreted in urine after administration of (-)-(R)- and (+)-(S)-2-phenylpropionic acid. The (+)-(S)-enantiomer underwent chiral inversion to the (-)-(R)-antipode when incubated with dog hepatocytes. These data suggests that both enantiomers of 2-phenylpropionic acid are substrates for canine hepatic acyl CoA ligase(s) and thus undergo chiral inversion, but that the CoA thioester of only (+)-(S)-2-phenylpropionic acid is a substrate for the glycine N-acyl transferase. These studies are presently being extended to the structure and species specificity of the reverse inversion and amino acid conjugation of profen NSAIDs.  相似文献   

7.
The synthesis of nitroxide spin-labeled derivatives of S-acetoacetyl-CoA, S-acetoacetylpantetheine, and S-acetoacetylcysteamine is described. These compounds are active substrates of L-3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase, EC 1.1.1.35] exhibiting vmax values from 20% to 70% of S-acetoacetyl-CoA itself. S-Acetoacetylpantetheine and S-acetoacetylcysteamine form binary complexes with the enzyme and exhibit ESR spectra typical for immobilized nitroxides. In the case of spin-labeled pantetheine, the radical is more mobile. When spin-labeled substrates are bound simultaneously to each active site of this dimeric enzyme, spin-spin interactions differentiate between two alternate orientations of the substrate [Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.H., & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262-8266]. The fatty acid moiety is thought to be located in a cleft between two domains whereas a large part of the CoA moiety probably extends into the solution. NAD+, spin-labeled at N6 of the adenine ring, is an active coenzyme of L-3-hydroxyacyl-CoA dehydrogenase (60% vmax). Complexes with the enzyme exhibit ESR spectra typical of highly immobilized nitroxides. Binding of coenzyme NAD+ causes conformational changes of the binary enzyme/substrate complex as revealed by changes in the ESR spectrum of spin-labeled S-acetoacetylpantetheine.  相似文献   

8.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

9.
10.
Summary The new enzyme d-2-hydroxyisocaproate dehydrogenase (NAD+-dependent) was detected in strains of the genus Lactobacillus and related genera. Straight and branched chain aliphatic as well as aromatic 2-ketocarboxylic acids are stereospecifically reduced to the corresponding d-2-hydroxycarboxylic acids according to the following equation:R-CO-COOH + NADH + H+ R-CHOH-COOH + NAD+ The enzyme is called d-hydroxyisocaproate dehydrogenase by us because 2-ketoisocaproate is the substrate with the lowest KM-value. NAD(H) as a cofactor cannot be replaced by NADP(H). Because of its broad substrate specificity we chose the strain Lactobacillus casei ssp. pseudoplantarum (DSM 20 008) for enzyme production and characterization. d-2-hydroxyisocaproate dehydrogenase could be purified 180-fold starting with 500 g of wet cells.The purification procedure involved liquid-liquid extraction with aqueous two-phase systems and ion-exchange chromatography. At this stage the enzyme has a specific activity of 25 U/mg and can be used for technical applications. Further purification up to a homogeneous protein with a specific activity of 110 U/mg can be achieved by chromatography on Amberlite CG 50 at pH 3.5. Properties important for technical application of the d-HicDH were investigated, especially the substrate specificity and the optimum pH- and temperature ranges for activity and stability of the catalist.  相似文献   

11.
The genetic operon for propionic acid degradation in Salmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381-1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a K(m) of 50 microM and a specific activity of 120 micromol. min(-1). mg(-1) were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinbüchel, J. Bacteriol. 174:6590-6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291-299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity.  相似文献   

12.
Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation.  相似文献   

13.
Inactivation of five distinct acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA (MCPA-CoA), the toxic metabolite of hypoglycin from unripe ackee fruit, was investigated using purified enzyme preparations. Short-chain acyl-CoA (SCADH), medium-chain acyl-CoA (MCADH) and isovaleryl-CoA (IVDH) dehydrogenases were severely and irreversibly inactivated by MCPA-CoA, while 2-methyl-branched chain acyl-CoA dehydrogenase (2-meBCADH) was only slowly and mildly inactivated. Long-chain acyl-CoA dehydrogenase (LCADH) was not significantly inactivated, even after prolonged incubation with MCPA-CoA. Inactivation of SCADH, MCADH and IVDH was effectively prevented by the addition of substrate. This mode of inactivation by MCPA-CoA explains the urinary metabolite profile in hypoglycin treated-rats, which includes large amounts of metabolites from fatty acids and leucine, and relatively small amounts of those from valine and isoleucine. Spectrophotometric titration of SCADH and MCADH with MCPA-CoA, together with the protective effects of substrate, indicates that MCPA-CoA is acted upon by, and exerts in turn irreversible inactivation of, SCADH and MCADH, confirming that MCPA-CoA is a suicide inhibitor (Wenz et al. (1981) J. Biol. Chem. 256, 9809-9812). Spectrophotometric titration data of LCADH and MCPA-CoA is typical of non-reacting CoA ester.  相似文献   

14.
The homodimeric enzyme form of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa ATCC 17933 crystallizes readily with the space group R3. The X-ray structure was solved at 2.6 A resolution by molecular replacement.Aside from differences in some loops, the folding of the enzyme is very similar to the large subunit of the quinoprotein methanol dehydrogenases from Methylobacterium extorquens or Methylophilus W3A1. Eight W-shaped beta-sheet motifs are arranged circularly in a propeller-like fashion forming a disk-shaped superbarrel. No electron density for a small subunit like that in methanol dehydrogenase could be found. The prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion. Most amino acid residues found in close contact with the prosthetic group pyrroloquinoline quinone and the Ca(2+) are conserved between the quinoprotein ethanol dehydrogenase structure and that of the methanol dehydrogenases. The main differences in the active-site region are a bulky tryptophan residue in the active-site cavity of methanol dehydrogenase, which is replaced by a phenylalanine and a leucine side-chain in the ethanol dehydrogenase structure and a leucine residue right above the pyrrolquinoline quinone group in methanol dehydrogenase which is replaced by a tryptophan side-chain. Both amino acid exchanges appear to have an important influence, causing different substrate specificities of these otherwise very similar enzymes. In addition to the Ca(2+) in the active-site cavity found also in methanol dehydrogenase, ethanol dehydrogenase contains a second Ca(2+)-binding site at the N terminus, which contributes to the stability of the native enzyme.  相似文献   

15.
The teichuronic acid type polysaccharide found in Rhizobium meliloti which is associated with sensitivity to phage 16B and is formed in the inner membranes from UDP-galactose and UDP-galacturonic acid (Ugalde, R. A., Coira, J. A., and Brill, W. J. (1986) J. Bacteriol. 168, 270-275) has been studied further. Results of acid hydrolysis, periodate oxidation, and borohydride reduction show that this polysaccharide contains the repetitive unit -galacturonosyl(1-3)galactosyl(1-4-). A soluble enzyme was found to catalyze the transfer of methyl groups from S-adenosylmethionine to position 2 of the galacturonosyl residue. The enzyme requires Mn2+ or Mg2+, its pH optimum is 8.2, and the apparent Km for S-adenosylmethionine is 2.7 microM. The teichuronic acid type polysaccharide bound to a trichloroacetic acid-insoluble cell residue is a substrate for the methyltransferase; however, the polysaccharide released from the trichloroacetic acid-insoluble portion by mild acid treatment is no longer methylated. Other soluble galacturonic acid-containing polysaccharides were not used as substrates. The methyltransferase and the polysaccharide acceptor are both found in R. meliloti strain 102F51. Spontaneously arising mutants resistant to phage 16B do not form teichuronic acid but are transferase-positive. Other strains of R. meliloti as well as Agrobacterium tumefaciens and Escherichia coli cells do not form teichuronate and have no transferase.  相似文献   

16.
Oxidative phosphorylation and substrate level phosphorylation catalyzed by succinyl-CoA synthetase found in the citric acid and the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle contribute to mitochondrial ATP synthesis in procyclic Trypanosoma brucei. The latter pathway is specific for trypanosome but also found in hydrogenosomes. In organello ATP production was studied in wild-type and in RNA interference cell lines ablated for key enzymes of each of the three pathways. The following results were obtained: 1) ATP production in the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle was directly demonstrated. 2) Succinate dehydrogenase appears to be the only entry point for electrons of mitochondrial substrates into the respiratory chain; however, its activity could be ablated without causing a growth phenotype. 3) Growth of procyclic T. brucei was not affected by the absence of either a functional citric acid or the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle. However, interruption of both pathways in the same cell line resulted in a growth arrest. In summary, these results show that oxygen-independent substrate level phosphorylation either linked to the citric acid cycle or tied into acetate production is essential for growth of procyclic T. brucei, a situation that may reflect an adaptation to the partially hypoxic conditions in the insect host.  相似文献   

17.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

18.
Bovine liver glutamate dehydrogenase reacts covalently with 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of 1 mol reagent/mol enzyme subunit and loss of one of the two ADP sites of native enzyme [S. P. Batra and R. F. Colman, J. Biol. Chem. 261, 15565-15571 (1986)]. Incorporation of reagent is prevented specifically by ADP. The modified enzyme has now been digested with trypsin. The nucleotidyl peptide has been purified by chromatography on phenylboronate-agarose, followed by reverse-phase HPLC. On the basis of amino acid composition following acid hydrolysis, and gas-phase sequencing, the modified tryptic peptide was established as Ala-Gln-His-Ser-Gln-His-Arg, corresponding to amino acids 80-86 of the known glutamate dehydrogenase primary structure. The evidence presented indicates that the target amino acid attacked by 2-BDB-TAMP is histidine-82 and that this residue is located within the high-affinity ADP-activating site of glutamate dehydrogenase. In the course of this work, it was found that the positions of Gln84 and His85 had been reported as reversed in the revised sequence of bovine liver glutamate dehydrogenase [J. H. Julliard and E. L. Smith, J. Biol. Chem. 254, 3427-3438 (1979)]. Three additional corrections are here reported in the amino acid sequence of the native enzyme on the basis of gas-phase sequencing of other peptides purified by HPLC: Asp168 (not Asn); His221-Gly222 (not Gly-His); and Glu355 (not Gln).  相似文献   

19.
Since skeletal muscle is the major site in the body for oxidation of leucine, isoleucine and valine, the pathway and control of leucine oxidation were investigated in cell-free preparations of rat muscle. Leucine was found to be transaminated to 4-methyl-2-oxopentanoate, which was then oxidatively decarboxylated. On differential centrifugation 70--80% of the transaminase activity was recovered in the soluble fraction of the cell, and the remaining amount in the mitochondrial fraction. The transaminase, from both fractions had similar pH optima and both were markedly inhibited by Ca2+. Thus changes in cellular Ca2+ concentration may regulate transaminase activity. Both transaminases had a much higher affinity for 2-oxoglutarate than for pyruvate. Therefore the utilization of amino groups from leucine for the biosynthesis of alanine in muscle [Odessey, Khairallah & Goldberg (1974) J. Biol. Chem. 249, 7623--7629] in vivo involves transamination with 2-oxoglutarate to produce glutamate, which is then transaminated with pyruvate to produce alanine. The dehydrogenase activity assayed by the decarboxylation of methyl-2-oxo[1-14C]pentanoate was localized exclusively in the fraction containing mitochondria and required NAD+, CoA and thiamin pyrophosphate for optimal activity. Measurements of competitive inhibition suggested that the oxo acids of leucine, isoleucine and valine are all decarboxylated by the same enzyme. The enzyme activity was decreased by 90% upon freezing or sonication and was stimulated severalfold by Mg2+, K+ and phosphate ions. In addition, it was markedly inhibited by ATP, but not by non-metabolizable analogues. This observation suggests that splitting of ATP is required for inhibition. The oxidative decarboxylation of 4-methyl-2-oxopentanoate by the dehydrogenase appears to be the rate-limiting step for leucine oxidation in muscle homogenates and also in intact tissues. In fact, rat muscles incubated with [1-14C]leucine release 1-14C-labelled oxo acid into the medium at rates comparable with the rate of decarboxylation. Intact muscles also released the oxo acids of [1-14C]valine or [1-14C]isoleucine, but not of other amino acids. These findings suggest that muscle is the primary source of the branched-chain oxo acids found in the blood.  相似文献   

20.
A comparison of the primary structures of NAD(+)-dependent D-lactate dehydrogenase with L-lactate dehydrogenase and L-malate dehydrogenase failed to show any sequence similarity. However, D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei, glycerate dehydrogenase from cucumber, D-3-phosphoglycerate dehydrogenase and erythronate 4-phosphate dehydrogenase from Escherichia coli showed 38%, 24%, 24% and 22% amino acid identity, respectively. The profile analysis of the aligned sequences confirmed their relatedness. The hydropathy profiles of the aligned dehydrogenases were almost identical between residues 100-300 indicating largely preserved folding patterns of their polypeptide chains. The data suggest that L- and D-specific 2-hydroxy acid dehydrogenase genes evolved from two different ancestors and thus represent two different sets of enzyme families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号