首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological importance of endogenous ghrelin in the regulation of growth hormone (GH) secretion is still unknown. To investigate the regulation of ghrelin secretion and pulsatility, we performed overnight ghrelin and GH sampling every 20 min for 12 h in eight healthy male subjects [age 37 +/- 5 (SD) years old, body mass index 27.2 +/- 2.9 kg/m2]. Simultaneous GH and ghrelin levels were assessed to determine the relatedness and synchronicity between these two hormones in the fasted state during the overnight period of maximal endogenous GH secretion. Pulsatility analyses were performed to determine simultaneous hormonal dynamics and investigate the relationship between GH and ghrelin by use of cross-approximate entropy (X-ApEn) analyses. Subjects demonstrated 3.0 +/- 2.1 ghrelin pulses/12 h and 3.3 +/- 0.9 GH pulses/12 h. The mean normalized ghrelin entropy (ApEn) was 0.93 +/- 0.09, indicating regularity in ghrelin hormone secretion. The mean normalized X-ApEn was significant between ghrelin and GH (0.89 +/- 0.12), demonstrating regularity in cosecretion. In addition, we investigated the ghrelin response to standard GH secretagogues [GH-releasing hormone (GHRH) alone and combined GHRH-arginine] in separate testing sequences separated by 1 wk. Our data demonstrate that, in contrast to GHRH alone, which had little effect on ghrelin, combined GHRH and arginine significantly stimulated ghrelin with a maximal peak at 120 min, representing a change of 66 +/- 14 pg/ml (P = 0.001 by repeated-measures ANOVA and P = 0.02 for GHRH vs. combined GHRH-arginine by MANOVA). We demonstrate relatedness between ghrelin and GH pulsatility, suggesting either that ghrelin participates in the pulsatile regulation of GH or that the two hormones are simultaneously coregulated, e.g., by somatostatin or other stimuli. Furthermore, the differential effects of GHRH alone vs. GHRH-arginine suggest that inhibition of somatostatin tone may increase ghrelin. These data provide further evidence of the physiological regulation of ghrelin in relationship to GH.  相似文献   

2.
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.  相似文献   

3.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

4.
Obesity is characterized by markedly decreased ghrelin and growth hormone (GH) secretion. Ghrelin is a GH-stimulating, stomach-derived peptide that also has orexigenic action. Ghrelin supplement may restore decreased GH secretion in obesity, but it may worsen obesity by its orexigenic action. To reveal effects of ghrelin administration on obese animals, we first examined acute GH and orexigenic responses to ghrelin in three different obese and/or diabetic mouse models: db/db mice, mice on a high-fat diet (HFD mice), and Akita mice for comparison. GH responses to ghrelin were significantly suppressed in db/db, HFD, and Akita mice. Food intake of db/db and Akita mice were basally higher, and further stimulation of food intake by ghrelin was suppressed. Pituitary GH secretagogue receptor mRNA levels in db/db and HFD mice were significantly decreased, which may partly contribute to decreased GH response to ghrelin in these mice. In Akita mice for comparison, decreased hypothalamic GH-releasing hormone (GHRH) mRNA levels may be responsible for decreased GH response, since maximum GH response to ghrelin needs GHRH. When ghrelin was injected into HFD mice with GHRH coadministrated, GH responses to ghrelin were significantly emphasized. HFD mice injected with low-dose ghrelin and GHRH for 10 days did not show weight gain. These results indicate that low-dose ghrelin and GHRH treatment may restore decreased GH secretion in obesity without worsening obesity.  相似文献   

5.
The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.  相似文献   

6.
7.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

8.
Growth hormone (GH) secretion is vividly pulsatile in all mammalian species studied. In a simplified model, self-renewable GH pulsatility can be reproduced by assuming individual, reversible, time-delayed, and threshold-sensitive hypothalamic outflow of GH-releasing hormone (GHRH) and GH release-inhibiting hormone (somatostatin; SRIF). However, this basic concept fails to explicate an array of new experimental observations. Accordingly, here we formulate and implement a novel fourfold ensemble construct, wherein 1) systemic GH pulses stimulate long-latency, concentration-dependent secretion of periventricular-nuclear SRIF, thereby initially quenching and then releasing multiphasic GH volleys (recurrent every 3-3.5 h); 2) SRIF delivered to the anterior pituitary gland competitively antagonizes exocytotic release, but not synthesis, of GH during intervolley intervals; 3) arcuate-nucleus GHRH pulses drive the synthesis and accumulation of GH in saturable somatotrope stores; and 4) a purely intrahypothalamic mechanism sustains high-frequency GH pulses (intervals of 30-60 min) within a volley, assuming short-latency reciprocal coupling between GHRH and SRIF neurons (stimulatory direction) and SRIF and GHRH neurons (inhibitory direction). This two-oscillator formulation explicates (but does not prove) 1) the GHRH-sensitizing action of prior SRIF exposure; 2) a three-site (intrahypothalamic, hypothalamo-pituitary, and somatotrope GH store dependent) mechanism driving rebound-like GH secretion after SRIF withdrawal in the male; 3) an obligatory role for pituitary GH stores in representing rebound GH release in the female; 4) greater irregularity of SRIF than GH release profiles; and 5) a basis for the paradoxical GH-inhibiting action of centrally delivered GHRH.  相似文献   

9.
Ghrelin is a recently discovered stomach hormone that stimulates pituitary growth hormone (GH) secretion potently. The purpose of these experiments was to test the hypothesis that a stomach-ghrelin-pituitary-GH axis exists in which either an elevation or reduction in systemic GH levels will exert a negative or positive feedback action, respectively, on stomach ghrelin homeostasis. In rats, GH administration decreased stomach ghrelin mRNA levels and plasma ghrelin levels significantly. In GH-releasing hormone (GHRH) transgenic mice, GHRH overexpression decreased stomach ghrelin peptide levels when compared with control mice. In aged rats (25 months) stomach ghrelin mRNA and peptide levels and plasma ghrelin levels were decreased when compared with young rats (5 months). Because GH secretion is reduced in aged rats, the elevated stomach ghrelin production and secretion may reflect a decreased GH feedback on stomach ghrelin, homeostasis, and secretion. Together, these findings suggest that endogenous pituitary GH exerts a feedback action on stomach ghrelin homeostasis and support the hypothesis that a stomach-ghrelin-pituitary GH axis exists.  相似文献   

10.
Glucocorticoids are thought to inhibit growth hormone (GH) secretion through an enhancement of endogenous somatostatin tone. The aim of our study was to evaluate the effects of GH-releasing hormone (GHRH) and clonidine, an alpha-2-adrenergic agonist which increases GH secretion acting at the hypothalamic level with an unknown mechanism, on GH secretion in seven adult patients (3M, 4F) with non endocrine diseases and on daily immunosuppressive glucocorticoid therapy. Eleven normal subjects (7M, 4F) served as controls. Steroid-treated patients showed a blunted GH response to GHRH (GH peak 8.3 +/- 3 micrograms/L) with respect to normal subjects (GH peak 19.3 +/- 2.4 micrograms/L). The GH responses to clonidine were also blunted (p less than 0.05) in steroid-treated patients (GH peak 5.8 +/- 2.8 micrograms/L) with respect to normal subjects (GH peak 17.6 +/- 2.3 micrograms/L). No significant differences between the GH responses to GHRH and clonidine were observed either in steroid-treated or in normal subjects. Clonidine is not able to enhance GH secretion similar to GHRH in patients chronically treated with steroids. It can be hypothesized that clonidine does not elicit GH secretion decreasing hypothalamic somatostatin tone.  相似文献   

11.
Using a continuous subcutaneous octreotide infusion to create constant supraphysiological somatostatinergic tone, we have previously shown that growth hormone (GH) pulse generation in women is independent of endogenous somatostatin (SRIH) declines. Generalization of these results to men is problematic, because GH regulation is sexually dimorphic. We have therefore studied nine healthy young men (age 26 +/- 6 yr, body mass index 23.3 +/- 1.2 kg/m2) during normal saline and octreotide infusion (8.4 microg/h) that provided stable plasma octreotide levels (764.5 +/- 11.6 pg/ml). GH was measured in blood samples obtained every 10 min for 24 h. Octreotide suppressed 24-h mean GH by 52 +/- 13% (P = 0.016), GH pulse amplitude by 47 +/- 12% (P = 0.012), and trough GH by 39 +/- 12% (P = 0.030), whereas GH pulse frequency and the diurnal rhythm of GH secretion remained essentially unchanged. The response of GH to GH-releasing hormone (GHRH) was suppressed by 38 +/- 15% (P = 0.012), but the GH response to GH-releasing peptide-2 was unaffected. We conclude that, in men as in women, declines in hypothalamic SRIH secretion are not required for pulse generation and are not the cause of the nocturnal augmentation of GH secretion. We propose that GH pulses are driven primarily by GHRH, whereas ghrelin might be responsible for the diurnal rhythm of GH.  相似文献   

12.
Subjects with Cushing's disease have diminished growth hormone (GH) response to growth hormone-releasing hormone (GHRH). The aim of our study was to investigate the underlying mechanism of this diminished GH response in these patients using pyridostigmine (PD), an acetylcholinesterase inhibitor, which is reported to increase GH secretion by reducing somatostatin tone. Eight subjects with untreated Cushing's disease (caused by a pituitary adenoma) and 6 control subjects received GHRH 100 micrograms in 1 ml of saline, as intravenous bolus injection 60 min after (1) placebo (2 tablets, p.o.) or (2) PD (120 mg, p.o.). After GHRH plus placebo, the GH peak (mean +/- SEM) was significantly lower in subjects with Cushing's disease (2.4 +/- 0.5 micrograms/l) compared to control subjects (25.1 +/- 1.8 micrograms/l, p less than 0.05). After GHRH plus PD, the GH peak was significantly enhanced both in subjects with Cushing's disease (7.1 +/- 2.3 micrograms/l, p less than 0.05) and in control subjects (42.3 +/- 4.3 micrograms/l, p less than 0.05). In patients with Cushing's disease, the GH response to GHRH plus PD was lower with respect to the GH response to GHRH alone in normal subjects. We conclude that hypercortisolism may cause a decrease in central cholinergic tone which is in turn hypothesized to be responsible of an enhanced somatostatin release from the hypothalamus. However, other metabolic or central nervous system alterations may act synergistically with hypercortisolism in causing GH inhibition in patients with Cushing's disease.  相似文献   

13.
In a previous paper we have demonstrated that growth hormone (GH) responses to growth hormone releasing hormone (GHRH) are higher in premenopausal normal women than in age matched healthy men. As in type I diabetes mellitus various disturbances of GH secretion have been reported, the aim of our study was to assess the effect of sex on basal and GHRH stimulated GH secretion in type I diabetes mellitus. In 21 female and 23 male type I diabetic patients and 28 female and 30 male control subjects GH levels were measured before and after stimulation with GHRH (1 microgram/kg body weight i.v.) by radioimmunoassay. GH responses to GHRH were significantly higher in female than in male control subjects (p less than 0.02), whereas the GH levels following GHRH stimulation were similar in female and male type I diabetic patients. GH responses to GHRH were significantly higher in the male type I diabetic patients than in the male control subjects (p less than 0.001); in the female type I diabetic patients and the female control subjects, however, GH responses to GHRH were not statistically different. The absence of an effect of sex on GHRH stimulated GH responses in type I diabetes mellitus provides further evidence of an abnormal GH secretion in this disorder.  相似文献   

14.
The dimorphic pattern of growth hormone (GH) secretion and somatic growth in male and female mammals is attributable to the gonadal steroids. Whether these hormones mediate their effects solely on hypothalamic neurons, on somatotropes or on both to evoke the gender-specific GH secretory patterns has not been fully elucidated. The purpose of this study was to determine the effects of 17beta-estradiol, testosterone and its metabolites on release of GH, GH-releasing hormone (GHRH) and somatostatin (SRIF) from bovine anterior pituitary cells and hypothalamic slices in an in vitro perifusion system. Physiological concentrations of testosterone and estradiol perifused directly to anterior pituitary cells did not affect GH releases; whereas, dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol increased GH. Perifusion of testosterone at a pulsatile rate, and its metabolites and estradiol at a constant rate to hypothalamic slices in series with anterior pituitary cells increased GH release. The androgenic hormones increased GHRH and SRIF release from hypothalamus; whereas, estradiol increased GHRH but decreased SRIF release. Our data show that estradiol and the androgens generated distinctly different patterns of GHRH and SRIF release, which in turn established gender-specific GH patterns.  相似文献   

15.
The discovery of hypothalamic hypophysiotropic factors confirmed the hypothesis of Green and Harris in the late 1940s. These hormones were isolated from their eutopic site of production (the hypothalamus) with the exception of growth hormone (GH)-releasing hormone (GHRH), which was isolated from an ectopic, tumoral site of production and found to be responsible for acromegaly. Following the isolation, characterization and synthesis of human GHRH, clinical studies were performed and are described below. Circulating levels of GHRH can be measured and provide the basis for the diagnosis of acromegaly related to the ectopic, tumoral production of GHRH. At present, GHRH is used as a test of GH secretion mainly as an adjunct to other agents which modify somatostatin status, or to GH-releasing peptides. Its therapeutic potential in children and the elderly is still under investigation. The role of GHRH in the pulsatile secretion of GH is described.  相似文献   

16.
Pulsatile GH secretion decreases during food-deprivation in the rat. It has been hypothesized that this decrease is due to elevated hypothalamic somatostatin secretion. This is based on the observation that GH increases in food-deprived rats following removal of endogenous somatostatin using passive immunization techniques. Cognizant of the important stimulatory effects of growth hormone-releasing hormone (GHRH) on GH secretion, we sought to determine if this neuropeptide plays any role in mediating GH secretion in food-deprived rats. Male rats were prepared with indwelling venous catheters using sodium pentobarbital anesthesia seven days prior to experimentation. Animals were food-deprived for 72 h, after which control blood samples were drawn from -60 to 0 min. One group was then treated with normal rabbit serum (NRS), while a second group was treated with GHRH antiserum (GHRHab). At 55 min all animals received somatostatin antiserum (SSab). No animal exhibited any spontaneous GH peak during the one hour control period or in the subsequent one hour period following the administration of GHRHab or NRS. Absence of GH pulsatility during food-deprivation, coupled with no decrease in GH levels in food-deprived rats treated with GHRHab suggest that diminished GHRH pulsatility is likely during food-deprivation. Subsequent treatment of these animals with SSab resulted in an identical 2.5 fold increase in GH concentrations. This result suggests that GHRH is not involved in the GH rebound following somatostatin withdrawal in food-deprived rats.  相似文献   

17.
A 36-yr-old man with multiple endocrine neoplasia (MEN) type I had an ectopic growth hormone-releasing hormone (GHRH) syndrome due to a GHRH-secreting pancreatic tumor. The immunoreactive (IR)-GHRH concentration in his plasma ranged from 161 to 400 pg/ml (299 +/- 61 pg/ml, mean +/- SD; normal, 10.4 +/- 4.1 pg/ml), and a significant correlation was found between his plasma IR-GHRH and GH (r = 0.622, p less than 0.02). After removal of the pancreatic tumor, the high plasma GH concentration returned to nearly the normal range (42.2 +/- 31.3 to 9.6 +/- 3.8 ng/ml). These changes paralleled the normalization of his plasma IR-GHRH (16.1 +/- 3.8 pg/ml) and some of his symptoms related to acromegaly improved. However, plasma GH (7.7 +/- 1.3 ng/ml) and IGF-I (591 +/- 22 ng/ml) concentrations were high at 12 months after surgery, suggesting adenomatous changes in the pituitary somatotrophs. Before surgery, exogenous GHRH induced a marked increase in plasma GH, and somatostatin and its agonist (SMS201-995) completely suppressed GH secretion, but not IR-GHRH release. No pulsatile secretion of either IR-GHRH or GH was observed during sleep. An apparent increase in the plasma GH concentration was observed in response to administration of TRH, glucose, arginine or insulin, while plasma IR-GHRH did not show any fluctuation. However, these responses of plasma GH were reduced or no longer observed one month and one year after surgery. These results indicate that 1) a moderate increase in circulating GHRH due to ectopic secretion from a pancreatic tumor stimulated GH secretion resulting in acromegaly, and evoked GH responses to various provocative tests indistinguishable from those in patients with classical acromegaly, and 2) the ectopic secretion of GHRH may play an etiological role in the pituitary lesion of this patient with MEN type I.  相似文献   

18.
Growth hormone releasing hormone receptor (GHRH-R) mRNA and protein was first localized to the anterior pituitary gland, consequent with the action of its ligand on GH synthesis and release. Subsequent studies found GHRH-R also expressed in the hypothalamus and in systemic tissues including those of the reproductive system. In the present work, we studied the distribution of GHRH-R in human reproductive system of males and females by immunohistochemical method. GHRH-R immunostaining was localized in male reproductive system: Leydig cells, Sertoli and basal germ cells of the seminiferous tubules and prostate secretory cells. GHRH-R immunostaining was also demonstrated in the ovary: oocytes, follicular cells, granulosa, thecal and corpus luteum cells. Endometrial glands, placenta and normal mammary glands also showed GHRH-R immunostaining. Our results demonstrate the localization of GHRH-R in the reproductive system, which may mediate the direct action of GHRH in these tissues. Moreover, GHRH-R was demonstrated in prostate and breast carcinomas, opening a variety of possibilities for the use of GHRH antagonists in the treatment of prostatic and mammary tumors.  相似文献   

19.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

20.
Spontaneous oscillations of intracellular calcium and growth hormone secretion   总被引:10,自引:0,他引:10  
A novel combination of two single cell assays allowed the simultaneous measurement of intracellular calcium concentration and hormone secretion in normal pituitary cells. [Ca2+]i was recorded using the fluorescent Ca2+ indicator fura-2 and digital imaging microscopy. This technique was combined with a reverse hemolytic plaque assay for growth hormone in order to identify somatotropes and quantitate the amount of hormone released. A dynamic profile of rhythmic calcium oscillations was found in spontaneously secreting somatotropes. Each somatotrope displayed a distinct frequency (one pulse every 5-30 s) and amplitude (range 50-450 nM) generated asynchronously from cell to cell. The amount of growth hormone (GH) released correlated directly with both the frequency and amplitude of calcium oscillations at the level of single GH cells. Furthermore, calcium excursions in somatotropes were rapidly suppressed by either (i) removal of extracellular calcium, (ii) somatostatin (1 mM), or (iii) the calcium channel blockers cobalt (2 mM) and verapamil (100 microM). These observations demonstrate that spontaneous calcium oscillations are characteristic for normal somatotropes. These oscillations are related to spontaneous hormone secretion and due to influx through calcium channels in the membrane. Somatostatin, the physiologic inhibitor of GH secretion, suppresses calcium transients. These findings suggest that the intracellular signaling information may be encoded both in the frequency and amplitude of calcium oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号