首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The isolated perfused rat pancreas was used to test the hypothesis that total cellular ATP or the ratio of ATP/free ADP plays the primary role in coupling intermediary metabolism to the biophysical events that are the basis of glucose-stimulated insulin release. The pancreas was preperfused for 20 min with 4.0 mM of a physiological mixture of 20 amino acids plus 4.2 mM glucose, and insulin release was then stimulated for 150 s by suddenly increasing the glucose to 8.3 mM. The pancreas was sampled at 24, 48, 72, and 150 s after the switch. The content of total ATP, ADP, AMP, Pi, phosphocreatine, and creatine were measured in beta-cell enriched cores of pancreatic islets microdissected from freeze-dried pancreas cryostat sections. Metabolites were measured by quantitative histochemical enzymatic cycling techniques. Modeling studies were carried out to assess the impact of biochemical analytical results on the membrane potential of the beta-cells. The level of free ADP was calculated using the creatine kinase equilibrium reaction and an intracellular pH of 7.2. First phase insulin release was stimulated at least 10-fold with the maximum reached 45 s after adding high glucose. The biochemical analytical data demonstrate that the total cellular level of the putative coupling factor ATP and of the ratios ATP/free ADP and ATP/free ADP x Pi are not significantly influenced by a glucose level change that causes a more than 10-fold surge of insulin release. The strength and limitations of the present experimental strategy and the implications of the results for our understanding of metabolic coupling in glucose-stimulated insulin release are discussed.  相似文献   

2.
3.
In order to investigate the metabolic abnormalities in hyperosmolar diabetes from the viewpoint of insulin or glucagon, experimental hyperosmolar diabetes was produced by a combination of cortisol injection and water deprivation or only by the latter in streptozotocin-induced moderately hyperglycemic rat. They had a high blood glucose level and high plasma osmotic pressure. Fasting plasma insulin tended to decrease in the dehydrated state whether diabetic or not. Fasting plasma glucagon was increased to 0.047 +/- 0.009 nmol/l (P less than 0.05) in the non-diabetic dehydrated state (normal 0.026 +/- 0.004 nmol/l), and a similar high level of plasma glucagon was observed in the dehydrated diabetic rat (0.052 +/- 0.020 nmol/l), especially after cortisol treatment. In isolated rat islet, insulin released from the dehydrated diabetic rat at a high concentration of glucose was to some extent lower than that of diabetic rat, and released IRG vice versa. The insulin:glucagon ratio in the presence of high glucose was significantly lower in the dehydrated diabetic rat than in the normal rat (P less than 0.01). In the diabetic rat this ratio was not significantly different. This finding was also consistent with the results of in vivo experiments. Thus more catabolic hormonal changes were found in in vivo and in vitro studies in the hyperosmolar diabetic rat.  相似文献   

4.
GABA is the major inhibitory neurotransmitter in the nervous system. It is also released by the insulin-producing beta-cells, providing them with a potential paracrine regulator. Because glucose was found to inhibit GABA release, we investigated whether extracellular GABA can serve as a marker for glucose-induced mitochondrial activity and thus for the functional state of beta-cells. GABA release by rat and human beta-cells was shown to reflect net GABA production, varying with the functional state of the cells. Net GABA production is the result of GABA formation through glutamate decarboxylase (GAD) and GABA catabolism involving a GABA-transferase (GABA-T)-mediated shunt to the TCA cycle. GABA-T exhibits K(m) values for GABA (1.25 mM) and for alpha-ketoglutarate (alpha-KG; 0.49 mM) that are, respectively, similar to and lower than those in brain. The GABA-T inhibitor gamma-vinyl GABA was used to assess the relative contribution of GABA formation and catabolism to net production and release. The nutrient status of the beta-cells was found to regulate both processes. Glutamine dose-dependently increased GAD-mediated formation of GABA, whereas glucose metabolism shunts part of this GABA to mitochondrial catabolism, involving alpha-KG-induced activation of GABA-T. In absence of extracellular glutamine, glucose also contributed to GABA formation through aminotransferase generation of glutamate from alpha-KG; this stimulatory effect increased GABA release only when GABA-T activity was suppressed. We conclude that GABA release from beta-cells is regulated by glutamine and glucose. Glucose inhibits glutamine-driven GABA formation and release through increasing GABA-T shunt activity by its cellular metabolism. Our data indicate that GABA release by beta-cells can be used to monitor their metabolic responsiveness to glucose irrespective of their insulin-secretory activity.  相似文献   

5.
Isolated pancreatic islets from 7-10 days old Wistar rats were incubated in freshly prepared human serum. The cytotoxic insulin leakage from the islets was correlated with the presence in the sera of islet cell surface antibodies (ICSA) determined by indirect immunofluorescence. Such cytotoxic ICSA were found to be common in Type-I diabetics as well as in nondiabetic subjects who had contact with laboratory rats.  相似文献   

6.
Summary. GABA is synthesized within GABA terminals through a highly compartmentalized process in which glial-derived glutamine is a major precursor and its release is modulated by GABAB autoreceptors. The aim of this work was to ascertain whether or not GABA synthesis and release are coupled in the rat brain through a GABAB autoreceptor-mediated modulation. It was found that (−)baclofen (30 μM) reduces the K+ stimulated release of [3H]GABA in synaptosomes and prisms (10 μM) from cerebral cortex, while at the same concentrations (−)baclofen failed to modify the synthesis of [3H]GABA from [3H]glutamine in cortical and hypothalamic slices, prisms and in cortical synaptosomes. In this latter preparation, identical results were observed when (−)baclofen was added to Krebs-Tris media, containing 5 or 15 mM K+ concentration. In agreement with these latter results, glutamic acid decarboxylase (GAD) activity from cortical and hypothalamic prisms was not affected by 1–100 μM (−)baclofen. Similar results on GABA synthesis were also observed when 1–100 μM 3-aminopropil(methyl)-phosphinic acid or GABA was used instead of (−)baclofen to stimulate GABAB autoreceptors. [3H]GABA release, [3H]GABA synthesis from [3H]glutamine and GAD activity were also insensitive to the action of the GABAB antagonist CGP 52432 (10–100 μM). Likewise, muscimol (0.3–100 μM) did not affect GABA synthesis. Our results indicate that unlike GABA release, GABA synthesis is not modulated by GABAB autoreceptors. Received August 31, 1999 Accepted September 20, 1999  相似文献   

7.
Summary Superfusion of synaptosomes prepared from rat olfactory bulb revealed constant basal release of endogenous taurine (Tau), aspartate (Asp), glutamate (Glu) and-aminobutyrate (GABA): their release rates were 110.4 ± 13.0, 30.3 ± 6.7, 93.7 ± 13.1, and 53.3 ± 8.8 pmol/min/mg protein, respectively. The depolarizing-stimulation with 30mM KCl evoked 1.17-, 2.18-, 2.55- and 1.53-fold increases, respectively. Tau release was calcium-independent. However, the perfusion of synaptosomes with Tau (10µM) inhibited the evoked increase in GABA release by 63% without changing basal release, although it did not affect release of Asp and Glu. Phaclofen (10µM, a GABAB receptor antagonist), but not bicuculline (10µM, a GABAA receptor antagonist), counteracted the Tau-induced reduction in GABA release. These data suggest that Tau may be abundantly released from nerve endings of rat olfactory bulb and that it may regulate GABA release through the activation of presynaptic GABAB autoreceptors.  相似文献   

8.
9.
In this study the temperature dependence of [3H]GABA release from brain slices evoked by electrical field stimulation and the Na+/K+ ATPase inhibitor ouabain was investigated. [3H]GABA has been taken up and released from hippocampal slices at rest and in response to electrical field stimulation (20 V, 10 Hz, 3 msec, 180 pulses) at 37 degrees C. When the bath temperature was cooled to 7 degrees C, during the sample collection period, the tissue uptake and the resting outflow of [3H]GABA were not significantly changed. In contrast, the stimulation-induced tritium outflow increased both in absolute amount (Bq/g) and in fractional release and the S2/S1 ratio was also higher at 7 degrees C. Perfusion of the slices with tetrodotoxin (TTX, 1 microM) inhibited stimulation-induced [3H]GABA efflux indicating that exocytotic release of vesicular origin is maintained under these conditions. 15 min perfusion with ouabain (10-20 microM) induced massive tritium release both in hippocampal and in striatal slices. However, the fraction of [3H]GABA outflow evoked by ouabain was much higher in the hippocampus than in the striatum. Sequential lowering the bath temperature from 37 degrees C to 17 degrees C completely abolished ouabain-induced [3H]GABA release in both brain regions, indicating that it is a temperature-dependent, carrier-mediated process. When the same experiments were repeated under Ca2+ free conditions, cooling the bath temperature to 17 degrees C, although substantially decreased the release but failed to completely abolish the tritium outflow evoked by ouabain, a significant part was maintained. Our results show that vesicular (field stimulation-evoked) and carrier-mediated (ouabain-induced) release of GABA is differentially affected by low temperature: while vesicular release is unaffected, carrier-mediated release is abolished at low bath temperature. Therefore, lowering the temperature offers a reliable tool to separate these two kinds of release and makes possible to study exclusively the pure neuronal release of GABA of vesicular origin.  相似文献   

10.
GABA, a major inhibitory neurotransmitter of the brain, is also present at high concentration in pancreatic islets. Current evidence suggests that within islets GABA is secreted from beta-cells and regulates the function of mantle cells (alpha- and delta-cells). In the nervous system GABA is stored in, and secreted from, synaptic vesicles. The mechanism of GABA secretion from beta-cells remains to be elucidated. Recently the existence of synaptic-like microvesicles has been demonstrated in some peptide-secreting endocrine cells. The function of these vesicles is so far unknown. The proposed paracrine action of GABA in pancreatic islets makes beta-cells a useful model system to explore the possibility that synaptic-like microvesicles, like synaptic vesicles, are involved in the storage and release of non-peptide neurotransmitters. We report here the presence of synaptic-like microvesicles in beta-cells and in beta-cells. Some beta-cells in culture were found to extend neurite-like processes. When these were present, synaptic-like microvesicles were particularly concentrated in their distal portions. The GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), was found to be localized around synaptic-like microvesicles. This was similar to the localization of GAD around synaptic vesicles in GABA-secreting neurons. GABA immunoreactivity was found to be concentrated in regions of beta-cells which were enriched in synaptic-like microvesicles. These findings suggest that in beta-cells synaptic-like microvesicles are storage organelles for GABA and support the hypothesis that storage of non-peptide signal molecules destined for secretion might be a general feature of synaptic-like microvesicles of endocrine cells.  相似文献   

11.
G A Cohen  V A Doze  D V Madison 《Neuron》1992,9(2):325-335
Opiates and the opioid peptide enkephalin can cause indirect excitation of principal cortical neurons by reducing inhibitory synaptic transmission mediated by GABAergic interneurons. The mechanism by which opioids mediate these effects on interneurons is unknown, but enkephalin hyperpolarizes the somatic membrane potential of a variety of neurons in the brain, including hippocampal interneurons. We now report a new, more direct mechanism for the opioid-mediated reduction in synaptic inhibition. The enkephalin analog D-Ala2-Met5-enkephalinamide (DALA) decreases the frequency of miniature, action potential-independent, spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) without causing a change in their amplitude. Thus, we conclude that DALA inhibits the action potential-independent release of GABA through a direct action on interneuronal synaptic terminals. In contrast, DALA reduces the amplitude of action potential-evoked, GABA-mediated IPSCs, as well as decreases their frequency. This suggests that the opioid-mediated inhibition of non-action potential-dependent GABA release reveals a mechanism that contributes to reducing action potential-evoked GABA release, thereby decreasing synaptic inhibition.  相似文献   

12.
The aim of the present study was to determine whether exogenous radioactive GABA and glutamate previously taken up by rat brain synaptosomes are released preferentially with respect to the endogenous unlabeled amino acids. Preferential release was monitored by comparing the specific radioactivity of the amino acids released to that present in synaptosomes at the beginning and at the end of the release period. The GABA released spontaneously or by depolarizing the synaptosomes with high K+ in the presence of Ca2+ had the same specific radio-activity as that present in synaptosomes before or after superfusion. Depolarization with veratridine or superfusion with OH-GABA caused a moderate increase (15–20%) in the specific radioactivity of the GABA released and a corresponding slight decrease in that of superfused synaptosomes. In conditions causing a supraadditive release of exogenous and endogenous GABA (see ref. 13), the specific radioactivity of the GABA released was increased 20–30%. The GABA with higher-than-average specific radioactivity is probably representative of the cytoplasmic pool of this amino acid. The glutamate released spontaneously had a specific radioactivity lower than that present in synaptosomes at the start of superfusion, and also the specific radioactivity in superfused synaptosomes was lower than at the start of superfusion. The glutamate released by aspartate (by heteroexchange), by veratridine, or by high K+ had a specific radioactivity higher than that of the amino acid released spontaneously, similar to that present in synaptosomes at the start of superfusion, and higher than that found in superfused synaptosomes. These findings suggest that exogenous radioactive glutamate is released preferentially with respect to the endogenous amino acid and to the glutamate synthesized from glucose during the superfusion period.  相似文献   

13.
Pancreatic islet amyloid deposits in type 2 diabetes are associated with decreased islet beta-cell function. They contain both amylin (islet amyloid polypeptide), the beta-cell-derived unique fibrillogenic component, and heparan sulfate proteoglycans (HSPGs). We hypothesized that beta-cell HSPGs contribute to islet amyloidogenesis. [35S]Sulfate-labeled proteoglycans from islet-derived beta-TC3 cell cultures eluted from diethylaminoethyl Sephacel at 0.35M NaCl. Chromatography on Sepharose CL-4B and SDS-PAGE analysis revealed distinct populations of proteoglycans. Medium HSPGs eluted at K(av) approximately 0.18 and 0.50 with glycosaminoglycan chains of approximately 28 and 19 kDa, respectively. A third population containing chondroitin/dermatan sulfate eluted at K(av) approximately 0.70 with glycosaminoglycan chains of approximately 10 kDa. A single size class of heparan and chondroitin/dermatan sulfate proteoglycans in the cell layer eluted at K(av) approximately 0.40 with glycosaminoglycan chains of approximately 19 kDa. Medium and cell layer proteoglycans bound exclusively to fibrillogenic amylin, as determined by gel mobility shift assays, indicating a possible role for beta-cell-derived proteoglycans in islet amyloid formation.  相似文献   

14.
15.
Phosphatidylinositol 4,5-biphosphate has been implicated in a variety of membrane-trafficking processes, including exocytosis of neurotransmitters. However, there are contradictory findings concerned ability of phenylarsine oxide (PAO), an inhibitor of phosphatidylinositol 4-kinase, to affect exocytotic release of different types of neurotransmitters. We bent our efforts to a detailed analysis of action of PAO on Ca(2+)-dependent and Ca(2+)-independent [3H]GABA release produced by exposure of rat brain synaptosomes to different concentrations of alpha-latrotoxin. We also compared PAO action on alpha-latrotoxin- and 4-aminopyridine (4-AP)-evoked [3H]GABA release. The experiments have shown that release of [3H]GABA evoked by the depolarization with 4-AP was decreased by 80% as a result of action of 3 microM PAO and the complete inhibition of release was observed with 10 microM PAO. When alpha-latrotoxin as a stimulant was applied, release of [3H]GABA was increased as toxin concentration used was elevated from 0.5 to 3.0 nM, however, concomitantly, the response of the toxin-induced [3H]GABA release to PAO became attenuated: 10 microM PAO led to almost complete inhibition of the effect of 0.5 nM alpha-latrotoxin and only partly decreased (by 40%) the response to 3.0 nM alpha-latrotoxin. To test whether the efficacy of PAO depended on the toxin-induced outflow of cytosolic [3H]GABA, synaptosomes with depleted cytosolic [3H]GABA pool were also exploited. Depletion was performed by means of heteroexchange of cytosolic [3H]GABA with nipecotic acid. The experiments have shown that treatment of loaded synaptosomes with nipecotic acid resulted in some increase of [3H]GABA release evoked by 0.5 nM alpha-latrotoxin, but in the two-fold decrease of the response to 3.0 nM alpha-latrotoxin. PAO essentially inhibited [3H]GABA release from depleted synaptosomes irrespective of alpha-latrotoxin concentration used. Therefore, the amount of [3H]GABA released from cytosolic pool determined, in considerable degree, the insensitivity of alpha-latrotoxin action to PAO. Thus, our data show that subnanomolar concentrations of alpha-latrotoxin may be used for stimulation of exocytotic release of [3H]GABA. Exposure of synaptosomes with nanomolar toxin concentrations leads not only to stimulation of exocytosis, but also to leakage of [3H]GABA from cytosolic pool. PAO potently inhibits exocytotic release of [3H]GABA and its inhibitory effectiveness is diminished as far as the outflow of [3H]GABA is elevated.  相似文献   

16.
Slices of rat neostriatum were incubated in Krebs-Henseleit medium. Modulation of [3H]GABA release by GABA agonists and antagonists was investigated. The GABAA receptor agonists muscimol (0.1 microM) and isoguvacine (5 microM) enhanced the stimulated release of [3H]GABA. The antagonists picrotoxin (1 microM) and bicuculline (50 microM) prevented the effects of the agonists. In the presence of naloxone (1 microM), which blocked the effects of enkephalinergic neurons within the slice preparation, muscimol (1 microM) no longer affected the release of [3H]GABA.  相似文献   

17.
GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with 3H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 microM. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro.  相似文献   

18.
A key question for understanding the mechanisms of pulsatile insulin release is how the underlying beta-cell oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) are synchronized within and among the islets in the pancreas. Nitric oxide has been proposed to coordinate the activity of the beta-cells by precipitating transients of [Ca2+]i. Comparing ob/ob mice and lean controls, we have now studied the action of carbon monoxide (CO), another neurotransmitter with stimulatory effects on cGMP production. A strong immunoreactivity for the CO-producing constitutive heme oxygenase (HO-2) was found in ganglionic cells located in the periphery of the islets and in almost all islet endocrine cells. Islets from ob/ob mice had sixfold higher generation of CO (1 nmol.min-1.mg protein-1) than the lean controls. This is 100-fold the rate for their constitutive production of NO. Moreover, islets from ob/ob mice showed a threefold increase in HO-2 expression and expressed inducible HO (HO-1). The presence of an excessive islet production of CO in the ob/ob mouse had its counterpart in a pronounced suppression of the glucose-stimulated insulin release from islets exposed to the HO inhibitor Zn-protoporhyrin (10 microM) and in a 16 times higher frequency of [Ca2+]i transients in their beta-cells. Hemin (0.1 and 1.0 microM), the natural substrate for HO, promoted the appearance of [Ca2+]i transients, and 10 microM of the HO inhibitors Zn-protoporphyrin and Cr-mesoporphyrin had a suppressive action both on the firing of transients and their synchronization. It is concluded that the increased islet production of CO contributes to the hyperinsulinemia in ob/ob mice. In addition to serving as a positive modulator of glucose-stimulated insulin release, CO acts as a messenger propagating Ca2+ signals with coordinating effects on the beta-cell rhythmicity.  相似文献   

19.
Zilberter Y  Kaiser KM  Sakmann B 《Neuron》1999,24(4):979-988
GABAergic, somatostatin-containing bitufted interneurons in layer 2/3 of rat neocortex are excited via glutamatergic excitatory postsynaptic potentials (EPSPs) by pyramidal neurons located in the same cortical layer. Pair recordings showed that short bursts of backpropagating dendritic action potentials (APs) reduced the amplitude of unitary EPSPs. EPSP depression was dependent on a rise in dendritic [Ca2+]. The effect was blocked by the GABA(B) receptor (GABA(B)-R) antagonist CGP55845A and was mimicked by the GABA(B)-R agonist baclofen. As presynaptic GABA(B)-Rs were activated neither by somatostatin nor by GABA released from axon collaterals of the bitufted cell, we conclude that GABA(B)-Rs were activated by a retrograde messenger, most likely GABA, released from the dendrite. Because synaptic depression was prevented by loading bitufted neurons with GDP-beta-S, it is likely to be caused by exocytotic GABA release from dendrites.  相似文献   

20.
The action of anticonvulsant drugs, phenytoin, diazepam, clonazepam and phenobarbitone, was tested on the release of [14C]-GABA from tissue slices of rat cerebral cortex. All drugs caused a significant dose-dependent depression of the 33mM-K+-evoked release of [14C]-GABA but had little effect on the resting release of [14C]-GABA, except at high concentrations. The IC50 values for inhibition of K+-evoked release of [14C]-GABA were 4.7 × 10?5, 7 × 10?5, 28 × 10?5 and 7.9 × 10?4M for diazepam, clonazepam, phenytoin and phenobarbitone respectively. Trifluoperazine also caused a similar and complete inhibition of [14C]-GABA release with an IC50 of 1 × 10?5M. The effect of diazepam and trifluoperazine were additive. The inhibition by trifluoperazine could be overcome by addition of exogenous calmodulin, whereas that of diazepam, phenytoin or phenobarbitone was not overcome. It is proposed that the anticonvulsants tested inhibit calcium-dependent transmitter release at a site distal to the formation of a calcium-calmodulin complex, which is presumably activated by this complex. Trifluoperazine, on the other hand, acts by reducing the availability of calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号