首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Habitat quality and habitat geometry are two crucial factors driving metapopulation dynamics. However, their intricacy has prevented so far a reliable test of their relative impact on local population dynamics and persistence. Here we report on a long‐term study in which we manipulated habitat quality within a butterfly metapopulation, whereas habitat geometry was kept constant. The treatment consisted in lowering the quality of certain habitat patches while others were kept untreated, using the same spatial design over years. The effect of the treatment on metapopulation dynamics was assessed by comparing residence probability and dispersal rates within the same habitat network on 11 and 6 independent butterfly generations before and after treatment, respectively. Results showed that the experimental decrease in habitat quality generated significantly higher emigration rates from treated patches. This increase was associated with a significant decrease in dispersal rates out of untreated patches, and a significant higher residence probability in these patches. The direct relation between lower habitat quality and higher dispersal propensity in treated patches was expected. However, the lower dispersal from untreated patches after treatment was opposite to the expectation of positive density dependent dispersal generally observed in butterflies. Such negative density‐dependent dispersal would allow a rapid fine‐tuning of dispersal rates to changes in habitat quality, particularly when the spatial autocorrelation of the environmental is low. Accordingly, dispersal would promote an ideal free distribution of individuals in the landscape according to their fitness expectation.  相似文献   

2.
The ability of individuals to leave a current breeding area and select a future one is important, because such decisions can have multiple consequences for individual fitness, but also for metapopulation dynamics, structure, and long‐term persistence through non‐random dispersal patterns. In the wild, many colonial and territorial animal species display informed dispersal strategies, where individuals use information, such as conspecific breeding success gathered during prospecting, to decide whether and where to disperse. Understanding informed dispersal strategies is essential for relating individual behavior to subsequent movements and then determining how emigration and settlement decisions affect individual fitness and demography. Although numerous theoretical studies have explored the eco‐evolutionary dynamics of dispersal, very few have integrated prospecting and public information use in both emigration and settlement phases. Here, we develop an individual‐based model that fills this gap and use it to explore the eco‐evolutionary dynamics of informed dispersal. In a first experiment, in which only prospecting evolves, we demonstrate that selection always favors informed dispersal based on a low number of prospected patches relative to random dispersal or fully informed dispersal, except when individuals fail to discriminate better patches from worse ones. In a second experiment, which allows the concomitant evolution of both emigration probability and prospecting, we show the same prospecting strategy evolving. However, a plastic emigration strategy evolves, where individuals that breed successfully are always philopatric, while failed breeders are more likely to emigrate, especially when conspecific breeding success is low. Embedding information use and prospecting behavior in eco‐evolutionary models will provide new fundamental understanding of informed dispersal and its consequences for spatial population dynamics.  相似文献   

3.
In this paper we derive a general expression measuring fitness in general structured metapopulation models. We apply the theory to a model structured by local population size and in which local dynamics is explicitly modelled. In particular, we calculate the evolutionarily stable dispersal strategy for individuals that can assess the local population density in the case where only dispersal is subject to evolutionary control but all other model ingredients are assumed fixed. We show that there exists a threshold size such that at ESS everyone should stay as long as the population size is below the threshold and everyone should disperse immediately as the population size reaches the threshold. Received: 13 August 1999 / Revised version: 2 May 2001 / Published online: 12 October 2001  相似文献   

4.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

5.
The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape-dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.  相似文献   

6.
7.
A spatially explicit metapopulation model with density-dependent dispersal is proposed in order to study the stability of synchronous dynamics. A stability criterion is obtained based on the computation of the transversal Liapunov number of attractors on the synchronous invariant manifold. We examine in detail a special case of density-dependent dispersal rule where migration does not occur if the patch density is below a certain critical density, while the fraction of individuals that migrate to other patches is kept constant if the patch density is above the threshold level. Comparisons with density-independent migration models indicate that this simple density-dependent dispersal mechanism reduces the stability of synchronous dynamics. We were able to quantify exactly this loss of stability through the frequency that synchronous trajectories are above the critical density.  相似文献   

8.
Current evolutionary models of dispersal set the ends of a continuum where the number of individuals emigrating from a habitat either equals the number of individuals immigrating (balanced dispersal) or where emigrants flow from a source habitat to a corresponding sink. Theories of habitat selection suggest a more sophisticated conditional strategy where individuals disperse from habitats where they have the greatest impact on fitness to habitats where their per capita impact is lower. Asymmetries between periods of population growth and decline result in a reciprocating dispersal strategy where the direction of migration is reversed as populations wax and wane. Thus, for example, if net migration of individuals flows from high- to low-density habitats during periods of population growth, net migration will flow in the opposite direction during population decline. Stochastic simulations and analytical models of reciprocating dispersal demonstrate that fitness, carrying capacity, stochastic dynamics, and interference from dominants interact to determine whether dispersal is balanced between habitats, or whether one habitat or the other acts as a net donor of dispersing individuals. While the pattern of dispersal may vary, each is consistent with an underlying strategy of density-dependent habitat selection.  相似文献   

9.
Allee-like effects in metapopulation dynamics   总被引:4,自引:0,他引:4  
The existences of the Allee effect at the local population level and of the Allee-like effect at the metapopulation level are important for both ecology and conservation. Although there have been a great many papers on the Allee effect, they have mainly referred to only local populations and have not dealt with the relationship between the two. In this paper, we begin with local population dynamics and then construct a model including both local population and metapopulation dynamics. Then we simulate with computer at these two levels. The results indicate that the Allee-like effect in a metapopulation may emerge from the imposed Allee effect at the local population level. This threshold fraction of occupied patches below which the metapopulation goes extinct is seriously affected by the per capita migration rate, the survival rate during migration and the initial population size on the occupied patches. We also find that severe demographic stochasticity may compound the metapopulation extinction risk posed by the Allee effect. These conclusions are helpful for nature conservation, especially for the preservation of rare species.  相似文献   

10.
In species undergoing range expansion, newly established populations are often more dispersive than older populations. Because dispersal phenotypes are complex and often costly, it is unclear how highly dispersive phenotypes are maintained in a species to enable their rapid expression during periods of range expansion. Here I test the idea that metapopulation dynamics of local extinction and recolonization maintain distinct dispersal strategies outside the context of range expansion. Western bluebirds display distinct dispersal phenotypes where aggressive males are more dispersive than nonaggressive males, resulting in highly aggressive populations at the edge of their expanding range. I experimentally created new habitat interior to the range edge to show that, as on the range front, it was colonized solely by aggressive males. Moreover, fitness consequences of aggression depended on population age: aggressive males had high fitness when colonizing new populations, while nonaggressive males performed best in an older population. These results suggest that distinct dispersal strategies were maintained before range expansion as an adaptation for the continual recolonization of new habitat. These results emphasize similarities between range expansion and metapopulation dynamics and suggest that preexisting adaptive dispersal strategies may explain rapid changes in dispersal phenotypes during range expansion.  相似文献   

11.
Mike S. Fowler 《Oikos》2009,118(4):604-614
The decision to move between patches in the environment is among the most important life history choices an organism can make. I derive a new density dependent dispersal rule, and examine how dispersal decisions based on avoiding fitness loss associated with an Allee effect or competitive effects impact upon population dynamics in spatially structured populations with qualitatively different dynamics. I also investigate the effects of the number of patches in the system and a limit to the patch sampling time available to dispersers. Dispersing to avoid competitive pressures can destabilise otherwise stable population dynamics, and stabilise chaotic dynamics. Dispersing to avoid an Allee effect does not qualitatively change local population dynamics until eventually driving unstable populations to global extinction with a sufficiently high fitness threshold. A time limit for sampling can stabilise dynamics if dispersal is based on escaping the Allee effect, and rescue populations from global extinction. The results are sensitive to the number of patches available in the environment and suggest that dispersal to avoid an Allee effect will only arise under biologically plausible conditions, i.e. where there is a limit to the number of dispersal attempts that can be made between generations.  相似文献   

12.
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.  相似文献   

13.
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype‐dependent manner that alters their match to their environment. Examining a one‐locus, two‐patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype‐dependent dispersal, and the potential for adaptation via spatial sorting of genotypes.  相似文献   

14.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

15.
Population growth can be positively or negatively dependent on density. Therefore, the distribution pattern of individuals in a patchy environment can greatly affect the growth of each subpopulation and thereby of the metapopulation. When population growth presents positive density‐dependence (Allee effect), the distribution pattern becomes crucial, as small populations have an increased extinction risk. The way in which individuals move between patches largely determines the distribution pattern and thereby the population dynamics. Collective movement, in particular, should be expected to increase the potential number of colonisers and therefore the probability of colonising success. Here, we use mathematical modelling (differential equations and stochastic simulations) to study how collective movement can influence metapopulation dynamics when Allee effects are at stake. The models are inspired by the two‐spotted spider mite, a phytophagous pest of recognised agricultural importance. This sub‐social mite displays trail laying/following behaviour that can provoke collective movement. Moreover, experimental evidence suggests that it is subject to Allee effects. In the first part of this study we present a single‐species population growth model incorporating Allee effects, and study its properties. In the second part, this growth model is integrated into a larger simulation model consisting of a set of interconnected patches, in which the individuals move from one patch to the other either independently or collectively. Our results show that collective movement is more advantageous than independent dispersal only when Allee effects are present and strong enough. Furthermore they provide a theoretical framework that allows the quantification of the interplay between Allee effects and collective movement.  相似文献   

16.
Laiolo P  Obeso JR 《PloS one》2012,7(6):e38526
Multilevel selection has rarely been studied in the ecological context of animal populations, in which neighbourhood effects range from competition among territorial neighbours to source-sink effects among local populations. By studying a Dupont's lark Chersophilus duponti metapopulation, we analyze neighbourhood effects mediated by song repertoires on fitness components at the individual level (life-span) and population level (growth rate). As a sexual/aggressive signal with strong effects on fitness, birdsong creates an opportunity for group selection via neighbour interactions, but may also have population-wide effects by conveying information on habitat suitability to dispersing individuals. Within populations, we found a disruptive pattern of selection at the individual level and an opposite, stabilizing pattern at the group level. Males singing the most complex songs had the longest life-span, but individuals with the poorest repertoires lived longer than 'average' males, a finding that likely reflects two male strategies with respect to fitness and sexual trait expression. Individuals from groups with intermediate repertoires had the longest life-span, likely benefitting from conspecific signalling to attract females up to the detrimental spread of competitive interactions in groups with superior vocal skills. Within the metapopulation selection was directional but again followed opposite patterns at the two levels: Populations had the highest growth rate when inhabiting local patches with complex repertoires surrounded by patches with simple repertoires. Here the song may impact metapopulation dynamics by guiding prospecting individuals towards populations advertising habitat quality. Two fitness components linked to viability were therefore influenced by the properties of the group, and birdsong was the target of selection, contributing to linking social/sexual processes at the local scale with regional population dynamics.  相似文献   

17.
Spatial heterogeneity is a strong determinant of host-parasite relationships, however local-scale mechanisms are often not elucidated. Generally speaking, in many circumstances dispersal is expected to increase disease persistence. We consider the case when host populations show density-dependent dynamics and are connected through the dispersal of individuals. Taking the domestic cats (Felis catus)--Feline Leukemia Virus (FeLV) as a toy model of host-microparasite system, we predict the disease dynamics when two host populations with distinct or similar structures are connected together and to the surrounding environment by dispersal. Our model brings qualitatively different predictions from one-population models. First, as expected, biologically realistic rates of dispersal may allow FeLV to persist in sets of populations where the virus would have gone extinct otherwise, but a reverse outcome is also possible: eradication of FeLV from a small population by connexion to a larger population where it is not persistent. Second, overall prevalence as well as depression of host population size due to infection are both enhanced by dispersal, even at low dispersal rates when disease persistence is not achieved in the two populations. This unexpected prediction is probably due to the combination of dispersal with density-dependent population dynamics. Third, the dispersal of non-infectious cats has more influence on virus prevalence than the dispersal of infectious. Finally, prevalence and depression of host population size are both related to the rate of dispersion, to the health status of individuals dispersing and to the dynamics of host populations.  相似文献   

18.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.  相似文献   

19.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

20.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号