首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified as an atypical 2-Cys peroxiredoxin due to the presence of a conserved peroxidatic N-terminal cysteine (Cys47) and an unconserved resolving C-terminal cysteine residue (Cys151) forming an intramolecular disulfide intermediate in the oxidized enzyme. We have recently reported the crystal structure of human peroxiredoxin 5 in its reduced form. Here, a new crystal form of human peroxiredoxin 5 is described at 2.0 A resolution. The asymmetric unit contains three polypeptide chains. Surprisingly, beside two reduced chains, the third one is oxidized although the enzyme was crystallized under initial reducing conditions in the presence of 1 mM 1,4-dithio-dl-threitol. The oxidized polypeptide chain forms an homodimer with a symmetry-related one through intermolecular disulfide bonds between Cys47 and Cys151. The formation of these disulfide bonds is accompanied by the partial unwinding of the N-terminal parts of the alpha2 helix, which, in the reduced form, contains the peroxidatic Cys47 and the alpha6 helix, which is sequentially close to the resolving residue Cys151. In each monomer of the oxidized chain, the C-terminal part including the alpha6 helix is completely reorganized and is isolated from the rest of the protein on an extended arm. In the oxidized dimer, the arm belonging to the first monomer now appears at the surface of the second subunit and vice versa.  相似文献   

2.
The biological activity of gliotoxin is dependent on the presence of a strained disulfide bond that can react with accessible cysteine residues on proteins. Rabbit muscle creatine kinase contains 4 cysteines per 42-kDa subunit and is active in solution as a dimer. Only Cys-282 has been identified as essential for activity. Modification of this residue results in loss of activity of the enzyme. Treatment of creatine kinase with gliotoxin resulted in a time-dependent loss of activity abrogated in the presence of reducing agents. Activity was restored when the inactivated enzyme was treated with reducing agents. Inactivation of creatine kinase by gliotoxin was accompanied by the formation of a 37-kDa form of the enzyme. This oxidized form of creatine kinase was rapidly reconverted to the 42-kDa species by the addition of reducing agents concomitant with restoration of activity. A 1:1 mixture of the oxidized and reduced monomer forms of creatine kinase as shown on polyacrylamide gel electrophoresis was equivalent to the activity of the fully reduced form of the enzyme consistent with only one reduced monomer of the dimer necessary for complete activity. Conversion of the second monomeric species of the dimer to the oxidized form by gliotoxin correlated with loss of activity. Our data are consistent with gliotoxin inducing the formation of an internal disulfide bond in creatine kinase by initially binding and possibly activating a cysteine residue on the protein, followed by reaction with a second neighboring thiol. The recently published crystal structure of creatine kinase suggests the disulfide is formed between Cys-282 and Cys-73.  相似文献   

3.
Human RNase H1 is active only under reduced conditions. Oxidation as well as N-ethylmaleimide (NEM) treatment of human RNase H1 ablates the cleavage activity. The oxidized and NEM alkylated forms of human RNase H1 exhibited binding affinities for the heteroduplex substrate comparable with the reduced form of the enzyme. Mutants of human RNase H1 in which the cysteines were either deleted or substituted with alanine exhibited cleavage rates comparable with the reduced form of the enzyme, suggesting that the cysteine residues were not required for catalysis. The cysteine residues responsible for the observed redox-dependent activity of human RNase H1 were determined by site-directed mutagenesis to involve Cys(147) and Cys(148). The redox states of the Cys(147) and Cys(148) residues were determined by digesting the reduced, oxidized, and NEM-treated forms of human RNase H1 with trypsin and analyzing the cysteine containing tryptic fragments by micro high performance liquid chromatography-electrospray ionization-Fourier transform ion cyclotron mass spectrometry. The tryptic fragment Asp(131)-Arg(153) containing Cys(147) and Cys(148) was identified. The mass spectra for the Asp(131)-Arg(153) peptides from the oxidized and reduced forms of human RNase H1 in the presence and absence of NEM showed peptide masses consistent with the formation of a disulfide bond between Cys(147) and Cys(148). These data show that the formation of a disulfide bond between adjacent Cys(147) and Cys(148) residues results in an inactive enzyme conformation and provides further insights into the interaction between human RNase H1 and the heteroduplex substrate.  相似文献   

4.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

5.
To assess the role of quaternary stability on the properties of Escherichia coli phosphofructokinase (PFK), a disulfide bond has been introduced across the subunit interface containing the allosteric binding sites in E. coli phosphofructokinase by changing N288 to cysteine. N288 is located in close proximity to the equivalent residue on an adjacent subunit. Although SDS-PAGE of oxidized N288C indicates monomeric protein, blocking the six native cysteine residues with N-ethyl maleimide (NEM) reveals dimers of N288C on non-native gels. Subsequent addition of dithiothreitol (DTT) to NEM-labeled N288C regenerates the monomer on SDS-PAGE, reflecting the reversibility of intersubunit disulfide bond formation. KSCN-induced hybrid formation between N288C and the charged-tagged mutant E195,199K exhibits full monomer-monomer exchange only upon DTT addition, providing a novel assessment of disulfide bond formation without NEM treatment. N288C also exhibits a diminished tendency toward nonspecific aggregation under denaturing conditions, a phenomenon associated with monomer formation in PFK. Pressure-induced dissociation and urea denaturation studies further indicate that oxidized N288C exhibits increased quaternary stability along both interfaces of the tetramer, suggesting a synergistic relationship between active site and allosteric site formation. Although the apparent binding affinities of substrates and effectors change somewhat upon disulfide formation in N288C, little difference is evident between the maximally inhibited and activated forms of the enzyme in oxidizing versus reducing conditions. Allosteric influence, therefore, is not correlated to subunit-subunit affinity, and does not involve substantial interfacial rearrangement.  相似文献   

6.
Initial disulfide formation steps in the folding of an omega-conotoxin   总被引:2,自引:0,他引:2  
To determine whether the native disulfides of omega-conotoxins are preferentially stabilized early in the folding of these small proteins, the rates and equilibria for disulfide formation were measured for three analogues of omega-conotoxin MVIIA. In each analogue, one of the three pairs of disulfide-bonded Cys residues was replaced with Ala residues, leaving four Cys residues that can form six intermediates with one disulfide and three species with two disulfides. For each analogue, all of the disulfide-bonded species were identified, and the equilibrium constants for forming the individual species via exchange with oxidized and reduced glutathione were measured. These equilibrium constants represent effective concentrations of the Cys thiols and ranged from 0.01 to 0.4 M in the fully reduced protein. There was little or no preference for forming the native disulfides, and the equilibria for forming the first and second disulfides decreased only slightly upon the addition of 8 M urea. The data for the four-Cys analogues, together with equilibrium data for the six-Cys form, were also used to estimate effective concentrations for forming a third disulfide once two native disulfides are present. These effective concentrations were approximately 100 and 10 M in the presence of 0 and 8 M urea, respectively. The results indicate that there is little or no preferential formation of native interactions in the folding of these molecules until two disulfides have formed, after which there is a high degree of cooperativity among the native interactions.  相似文献   

7.
Protein disulfide isomerase (PDI) and its homologs are catalysts of the formation of disulfide bonds in secretory proteins, and they also serve as molecular chaperones. In the present study, we investigated the redox-mediated regulation of the structures and functions of human pancreas-specific PDI homolog (PDIp). We found that formation of an inter-subunit disulfide bond in the recombinant human PDIp can alter not only its structure, but also its functions. PDIp exists predominantly as monomer under reducing conditions, but the dimeric form is significantly increased following the removal of the reducing agent, due to the formation of an inter-subunit disulfide bond. The oxidized PDIp (with an inter-subunit disulfide bond) appears to expose more hydrophobic patches and is more sensitive to protease digestion compared to the reduced form. Along with these structural changes, the oxidized PDIp also exhibits an enhanced chaperone activity. The formation of the inter-subunit disulfide bond in PDIp is mainly contributed by its non-active cysteine residue (cysteine-4), which is only present in human and primate PDIp, but not in rodent PDIp. In addition, we observed that the formation of the inter-subunit disulfide bond in PDIp is redox-dependent and is favored under oxidizing conditions, and that PDIp can function as a chaperone to form stable complexes with various non-native cellular proteins, particularly under oxidizing conditions. In light of these observations, it is concluded that the structures and functions of human PDIp are redox-regulated through formation of an inter-subunit disulfide bond between two cysteine-4 residues.  相似文献   

8.
Three cysteine-containing tryptic peptides were isolated and sequenced from mitochondrial 4-aminobutyrate aminotransferase using DABIA (4-dimethylaminoazobenzene-4-iodoacetamide) as specific labeling reagent for sulfhydryl groups. The enzyme is a dimer made up of two identical subunits, but four out of the six cysteinyl residues/dimer form disulfide bonds when treated with iodosobenzoate to yield inactive enzyme species. To identify the cysteinyl residues undergoing reversible oxidation/reduction, the S-DABIA-labeling patterns of the fully reduced (active) and fully oxidized (inactive) forms of the enzyme were compared. Tryptic digests of the reduced enzyme contained three labeled peptides. If the enzyme was treated with iodosobenzoate prior to reaction with DABIA and tryptic digestion, only one labeled peptide was detected and identified (peptide I), indicating that the two missing cysteinyl-containing peptides (peptides II, III) have been oxidized. The sulfhydryl groups undergoing oxidation/reduction were found to be intersubunit, based on SDS/polyacrylamide gel electrophoresis results. The loss of catalytic activity of 4-aminobutyrate aminotransferase by oxidation of sulfhydryl residues is related to constraints imposed at the subunit interface by the insertion of disulfide bonds.  相似文献   

9.
Deposition of wild-type beta2-microglobulin (beta2m) into amyloid fibrils is a complication in patients undergoing long-term hemodialysis. The native beta-sandwich fold of beta2m has a highly conserved disulfide bond linking Cys25 and Cys80. Oxidized beta2m forms needle-like amyloid fibrils at pH 2.5 in vitro, whereas reduced beta2m, at acid pH, in which the intra-chain disulfide bond is disrupted, cannot form typical fibrils. Instead, reduced beta2m forms thinner and more flexible filaments. To uncover the difference in molecular mechanisms underlying the aggregation of the oxidized and reduced beta2m, we performed molecular dynamics simulations of beta2m oligomerization under oxidized and reduced conditions. We show that, consistent with experimental observations, the oxidized beta2m forms domain-swapped dimer, in which the two proteins exchange their N-terminal segments complementing each other. In contrast, both dimers and trimers, formed by reduced beta2m, are comprised of parallel beta-sheets between monomers and stabilized by the hydrogen bond network along the backbone. The oligomerized monomers are in extended conformations, capable of further aggregation. We find that both reduced and oxidized dimers are thermodynamically less stable than their corresponding monomers, indicating that beta2m oligomerization is not accompanied by the formation of a thermodynamically stable dimer. Our studies suggest that the different aggregation pathways of oxidized and reduced beta2m are dictated by the formation of distinct precursor oligomeric species that are modulated by Cys25-Cys80 disulfide-bonds. We propose that the propagation of domain swapping is the aggregation mechanism for the oxidized beta2m, while "parallel stacking" of partially unfolded beta2m is the aggregation mechanism for the reduced beta2m.  相似文献   

10.
The circular dichroism (CD) and 1H-nmr properties of peptide 401, a bee venom component with 22 amino acid residues and two disulfide bridges, have been studied under a variety of conditions and compared with those of the structurally related octadecapeptide apamin. The major component of the relatively intense CD signal in the 200–230-nm region in both cases probably arises from the rigid asymmetric ring structures of the disulfide bridges. CD spectra are practically unaffected by pH (in the region 1–7), solvent (water, trifluoroethanol, dioxane/water mixtures), concentration of peptide, or additions of salt (guanidinium chloride, KCl). Temperature changes (in the range 20–59°C) have only a modest influence. For both apamin and peptide 401, reduction of the two disulfide bridges results in a dramatic change of the CD spectrum, which acquires the characteristic form of a random coil. Preliminary 1H-nmr data are presented for both the reduced and the oxidized form. Several resonance peaks could be assigned on the basis of the theoretical random-coil spectrum. In the oxidized forms, six slowly exchangeable amide protons could be found in a spectrum taken at low pH, which are ascribed to intramolecular hydrogen bonds. Each of the four protons of the two histidine residues of peptide 401 appears as two distinct resonance peaks in the oxidized form but not in the reduced form. This is interpreted as arising from conformational heterogeneity of peptide 401.  相似文献   

11.
Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium associated with chronic periodontitis. A 2D electrophoretic analysis of the outer membrane of P. gingivalis W50 revealed a dominant train of spots at 40-41 kDa. The proteins in the train of spots were digested in-gel with trypsin and identified by MS. The train of spots represented two proteins, designated Omp40 and Omp41 that share 47% sequence identity. Preparation of outer membranes in the absence of protease inhibitors resulted in partial cleavage of Omp40 and Omp41 to produce an N-terminal and C-terminal fragment of both proteins. The N-terminal fragments displayed the same isoelectric heterogeneity as the intact proteins. Almost 100% of the amino-acid sequence of these N-terminal fragments in each 2D gel spot was verified suggesting lack of post-translational modification. Re-subjecting a single N-terminal domain spot to 2D electrophoresis resulted in the complete series of spots being reproduced, suggesting that the heterogeneity was related to conformational equilibria. Under reduced conditions and without heating, Omp40 and Omp41 migrated as 34- to 35-kDa proteins in SDS/PAGE whereas under nonreduced conditions the proteins migrated as 70-kDa proteins, suggesting the formation of dimers through intersubunit disulfide bonds. The proteins each contain two cysteine residues in the conserved sequence RPVSCPECPE. Tryptic peptides generated from the nonreduced forms of the proteins confirmed the presence of heterodimers stabilized through intersubunit disulfide bond formation. With the exception of heterodimer formation, the two proteins share several similarities with OmpA-like porins of other Gram-negative bacteria including consensus sequence, abundance, modification by heat, overall length and positioning of domains.  相似文献   

12.
Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-Å resolution from two crystal forms. In contrast to the previously characterized CLIC1 protein, which forms a possibly functionally important disulfide-induced dimer under oxidizing conditions, we show that CLIC2 possesses an intramolecular disulfide and that the protein remains monomeric irrespective of redox conditions. Site-directed mutagenesis studies show that removal of the intramolecular disulfide or introduction of cysteine residues in CLIC2, equivalent to those that form the intramolecular disulfide in CLIC1, does not cause dimer formation under oxidizing conditions. We also show that CLIC2 forms pH-dependent chloride channels in vitro with higher channel activity at low pH levels and that the channels are subject to redox regulation. In both crystal forms, we observed an extended loop region from the C-terminal domain, called the foot loop, inserting itself into an interdomain crevice of a neighboring molecule. The equivalent region in the structurally related glutathione transferase superfamily corresponds to the active site. This so-called foot-in-mouth interaction suggests that CLIC2 might recognize other proteins such as the ryanodine receptor through a similar interaction.  相似文献   

13.
Because tau aggregation likely plays a role in a number of neurodegenerative diseases, understanding the processes that affect tau aggregation is of considerable importance. One factor that has been shown to influence the aggregation propensity is the oxidation state of the protein itself. Tau protein, which contains two naturally occurring cysteine residues, can form both intermolecular disulfide bonds and intramolecular disulfide bonds. Several studies suggest that intermolecular disulfide bonds can promote tau aggregation in vitro. By contrast, although there are data to suggest that intramolecular disulfide bond formation retards tau aggregation in vitro, the precise mechanism underlying this observation remains unclear. While it has been hypothesized that a single intramolecular disulfide bond in tau leads to compact conformations that cannot form extended structure consistent with tau fibrils, there are few data to support this conjecture. In the present study we generate oxidized forms of the truncation mutant, K18, which contains all four microtubule binding repeats, and isolate the monomeric fraction, which corresponds to K18 monomers that have a single intramolecular disulfide bond. We study the aggregation propensity of the oxidized monomeric fraction and relate these data to an atomistic model of the K18 unfolded ensemble. Our results argue that the main effect of intramolecular disulfide bond formation is to preferentially stabilize conformers within the unfolded ensemble that place the aggregation-prone tau subsequences, PHF6* and PHF6, in conformations that are inconsistent with the formation of cross-β-structure. These data further our understanding of the precise structural features that retard tau aggregation.  相似文献   

14.
In order to determine solution conditions appropriate for reoxidizing reduced bovine growth hormone (bGH), we have examined the possibility of using a particular denaturant concentration to poise the secondary and tertiary structure of the reduced protein in a stable, nativelike state. It was envisioned that the structure of the reduced molecule would differ from that of the final oxidized molecule solely by the absence of disulfide bonds. Dilution of concentrated samples of reduced and unfolded protein from 6.0 M guanidine into 4.5 M urea followed by air oxidation indicated it was possible to induce refolding and reoxidation to an oxidized monomeric species in high yield (approximately 90%). The choice of solution conditions was based on comparison of urea equilibrium denaturation data for native oxidized protein to those for completely reduced protein and to protein in which sulfhydryl groups had been either partially or completely reduced and subjected to modification with iodoacetamide or methyl methanethiolsulfonate. The denaturation behavior of these species supports the existence of equilibrium folding intermediates for bovine growth hormone and demonstrates that chemical modification of the protein is capable of inducing differences in the denaturation behavior of these intermediates. The changes in the protein absorption spectrum and helix-related circular dichroism signal, along with direct titration of protein sulfhydryl groups, indicated that the refolding/reoxidation of bGH is a multistate process. The ordered nature of the kinetic changes in these probes during reoxidation indicates that disulfide formation is a sequential process, with little mispairing in 4.5 M urea, and that it proceeds through one or more obligatory kinetic folding events. The equilibrium denaturation behavior of the oxidized molecule and the various chemically modified forms, together with the reoxidation data, indicated that the protein maintains a high degree of secondary structure without intrachain disulfide bonds. The formation of these disulfide bonds is a discrete process which occurs after a framework of protein secondary structure is established.  相似文献   

15.
The metzincin metalloproteinase pregnancy-associated plasma protein A (PAPP-A, pappalysin-1) promotes cell growth by the cleavage of insulin-like growth factor-binding proteins-4 and -5, causing the release of bound insulin-like growth factors. The proteolytic activity of PAPP-A is inhibited by the proform of eosinophil major basic protein (pro-MBP), which forms a covalent 2:2 proteinase-inhibitor complex based on disulfide bonds. To understand the process of complex formation, we determined the status of cysteine residues in both of the uncomplexed molecules. A comparison of the disulfide structure of the reactants with the known disulfide structure of the PAPP-A.pro-MBP complex reveals that six cysteine residues of the pro-MBP subunit (Cys-51, Cys-89, Cys-104, Cys-107, Cys-128, and Cys-169) and two cysteine residues of the PAPP-A subunit (Cys-381 and Cys-652) change their status from the uncomplexed to the complexed states. Upon complex formation, three disulfide bonds of pro-MBP, which connect the acidic propiece with the basic, mature portion, are disrupted. In the PAPP-A.pro-MBP complex, two of these form the basis of both two interchain disulfide bonds between the PAPP-A and the pro-MBP subunits and two disulfide bonds responsible for pro-MBP dimerization, respectively. Based on the status of the reactants, we investigated the role of individual cysteine residues upon complex formation by mutagenesis of specific cysteine residues of both subunits. Our findings allow us to depict a hypothetical model of how the PAPPA.pro-MBP complex is formed. In addition, we have demonstrated that complex formation is greatly enhanced by the addition of micromolar concentrations of reductants. It is therefore possible that the activity in vivo of PAPP-A is controlled by the redox potential, and it is further tempting to speculate that such mechanism operates under pathological conditions of altered redox potential.  相似文献   

16.
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.  相似文献   

17.
Rapid molecular collapse mediated by nonlocal interactions is believed to be a crucial event for protein folding. To investigate the role of nonlocal interactions in tertiary structure formation, we performed a nonlocal interaction substitution mutation analysis on staphylococcal nuclease (SNase). Y54 and I139 of wild-type (WT) SNase and Δ140-149 were substituted by cysteine to form intramolecular disulfide bonds, respectively called WT-SS and Δ140-149-SS. Under physiological conditions, the reduced form of Δ140-149-SS appears to assume a denatured structure; in contrast, the oxidized form of Δ140-149-SS forms a native-like structure. From this result, we conclude that the C-terminal region participates in a nonlocal interaction that is indispensable for the native structure. Although the oxidized form of WT-SS assumes a more compact denatured structure under acidic conditions than the WT, the kinetic measurements reveal that the refolding reactions of both the reduced and oxidized forms of WT-SS are similar to those of the WT, suggesting that an intact nonlocal interaction is established within the dead time (22 ms). On the basis of these results, we propose that the native nonlocal contact established at the early stage of the folding process facilitates further secondary structure formation.  相似文献   

18.
An engineered disulfide bond in dihydrofolate reductase   总被引:7,自引:0,他引:7  
Substitution of cysteine for proline-39 in Escherichia coli dihydrofolate reductase by oligonucleotide-directed mutagenesis positions the new cysteine adjacent to already existing cysteine-85. When the mutant protein is expressed in the E. coli cytosol, the cysteine sulfur atoms are found, by X-ray crystallographic analysis, to be in van der Waals contact but not covalently bonded to one another. In vitro oxidation by dithionitrobenzoate results in formation of a disulfide bond between residues 39 and 85 with a geometry close to that of the commonly observed left-handed spiral. Comparison of 2.0-A-refined crystal structures of the oxidized (cross-linked) and reduced (un-cross-linked) forms of the mutant enzyme shows that the conformation of the enzyme molecule was not appreciably affected by formation of the disulfide bond but that details of the molecule's thermal motion were altered. The disulfide-cross-linked enzyme is at least 1.8 kcal/mol more stable with respect to unfolding, as measured by guanidine hydrochloride denaturation, than either the wild-type or the reduced (un-cross-linked) mutant enzyme. Nevertheless, the cross-linked form is not more resistant to thermal denaturation. Moreover, the appearance of intermediates in the guanidine hydrochloride denaturation profile and urea-gradient polyacrylamide gels indicates that the folding/unfolding pathway of the disulfide-cross-linked enzyme has changed significantly.  相似文献   

19.
DsbA蛋白是大肠杆菌周质空间内的巯基 /二硫键氧化酶 ,主要催化底物蛋白质二硫键的形成。利用定点突变结合色氨酸类似物标记技术 ,研究了DsbA蛋白的氧化还原性质和构象变化。结果显示 :(1 )DsbA蛋白的还原态比氧化态的结构更加稳定 ,说明DsbA的强氧化性来源于氧化态构象的紧张状态 ;(2 )DsbA氧化和还原态间特殊的荧光变化主要来源于Trp76在不同状态间微观环境的差异 ;(3 )色氨酸类似物标记不会对DsbA蛋白的结构和功能产生明显的影响 ,利用1 9F NMR进一步证实了DsbA氧化还原状态间的构象变化 ,而且这种变化主要影响Trp76的局部环境 ,而对Trp1 2 6的局部环境没有太大的影响  相似文献   

20.
This report describes the effects of pH and fructose 2,6-bisphosphate (an analog of fructose 1,6-bisphosphate) on the activity of oxidized and reduced fructose-1,6-bisphosphatase from spinach chloroplasts. Studies were carried out with either fructose 1,6-bisphosphate, the usual substrate, or sedoheptulose 1,7-bisphosphate, an alternative substrate. The reduction of the oxidized enzyme is achieved by a thiol/disulfide interchange. The pK values relative to each redox form for the same substrate (either fructose 1,6-bisphosphate or sedoheptulose 1,7-bisphosphate) are identical, suggesting the same site for both substrates on the active molecule. The finding that the analog (fructose 2,6-bisphosphate) behaves like a competitive inhibitor for both substrates also favours this hypothesis. The inhibitory effect of this sugar is more important when the enzyme is reduced than when it is oxidized. The shift in the optimum pH observed when [Mg2+] was raised is interpreted as a conformational change of oxidized enzyme demonstrated by a change in fluorescence. The reduced and oxidized forms have the same theoretical rates relative to both substrates, but the reduced form has an observed Vmax which is 60% of the theoretical Vmax while that of the oxidized form is only 37% of the theoretical Vmax. The reduced enzyme appears more efficient than the oxidized one in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号