首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of a transport system for S-adenosylmethionine was determined through the use of structurally related derivatives. Of the compounds tested, the analogues S-adenosylethionine and S-inosylmethionine and the naturally occurring compounds S-adenosyl-(5')-3-methylthiopropylamine and S-adenosylhomocysteine competitively inhibited uptake of the sulfonium compound. Ki values for these compounds indicate that the order of affinity for the transport protein is S-adenosylmethionine congruent to S-adenosyl-(5')-3-methyl-thiopropylamine greater than S-adenosylethionine greater than S-inosylmethionine greater than S-adenosylhomocysteins. S-adenosyl-(2-hydroxy-4-methylthio)butyric acid exerted inhibition of a mixed type. S-insoyl-(2-hydroxy-4-methylthio)butyric acid, S-inosylhomocysteine, and S-ribosylhomocysteine were without effect. On the basis of the inhibition data, the methionine-amino, adenine-amino, and methyl groups were identified as group important in the binding of S-adenosylmethionine to the transport protein. Comparison is made with the specificities of various transmethylating enzymes utilizing S-adenosylmethionine. In addition, a number of conventional and temperature-sensitive S-adenosylmethionine transport mutants were isolated and analyzed in an attempt to identify the structural character of the specific transport protein(s). The data obtained suggest that only a single gene (a single polypeptide) is involved in specific S-adenosylmethionine transport. Apparent interallelic complementation supports the assumption that the functional form of the protein is composed of two or more copies of a monomer.  相似文献   

2.
Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism   总被引:3,自引:0,他引:3  
A E Pegg  K C Tang  J K Coward 《Biochemistry》1982,21(20):5082-5089
Exposure of mammalian cells (transformed mouse fibroblasts or rat hepatoma cells) to S-adenosyl-1,8-diamino-3-thiooctane produced profound changes in the intracellular polyamine content. Putrescine was increased and spermidine was decreased, consistent with the inhibition of spermidine synthase by this compound, which is a potent and specific "transition-state analogue inhibitor" of the isolated enzyme in vitro. The spermine content of the cells was increased by exposure to this drug presumably since spermine synthase was able to use a greater proportion of the available decarboxylated S-adenosylmethionine when spermidine synthase was inhibited. The decarboxylated S-adenosylmethionine content rose substantially because the activity of S-adenosylmethionine decarboxylase was increased in response to the decline in spermidine. These results indicate that S-adenosyl-1,8-diamino-3-thiooctane is taken up by mammalian cells and is an effective inhibitor of spermidine synthase in vivo and that S-adenosylmethionine decarboxylase is regulated by the content of spermidine, but not of spermine. The growth of SV-3T3 cells was substantially reduced in the presence of S-adenosyl-1,8-diamino-3-thiooctane at concentrations of 50 microM or greater. Such inhibition was reversed by the addition of spermidine but not by putrescine. When SV-3T3 cells were exposed to 5 mM alpha-(difluoromethyl)ornithine and 50 microM S-adenosyl-1,8-diamino-3-thiooctane, the content of all polyamines was reduced. Putrescine and spermidine declined by more than 90% and spermine by 80%. Such cells grew very slowly unless spermidine was added.  相似文献   

3.
Thiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl- l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl- l-homocysteine and as a ternary complex with S-adenosyl- l-homocysteine and the substrate 6-mercaptopurine, to 1.8 and 2.0 A resolution, respectively. Comparison of the structures reveals that an active site loop becomes ordered upon 6-mercaptopurine binding. The positions of the two ligands are consistent with the expected S N2 reaction mechanism. Arg147 and Arg221, the only polar amino acids near 6-mercaptopurine, are highlighted as possible participants in substrate deprotonation. To probe whether these residues are important for catalysis, point mutants were prepared in the human enzyme. Substitution of Arg152 (Arg147 in murine TPMT) with glutamic acid decreases V max and increases K m for 6-mercaptopurine but not K m for S-adenosyl- l-methionine. Substitution at this position with alanine or histidine and similar substitutions of Arg226 (Arg221 in murine TPMT) result in no effect on enzyme activity. The double mutant Arg152Ala/Arg226Ala exhibits a decreased V max and increased K m for 6-mercaptopurine. These observations suggest that either Arg152 or Arg226 may participate in some fashion in the TPMT reaction, with one residue compensating when the other is altered, and that Arg152 may interact with substrate more directly than Arg226, consistent with observations in the murine TPMT crystal structure.  相似文献   

4.
It has previously been shown that incubation of mammalian cell cytosolic extracts with the protein kinase inhibitor tyrphostin A25 results in enhanced transfer of methyl groups from S-adenosyl-[methyl-3H]methionine to proteins. These findings were interpreted as demonstrating tyrphostin stimulation of a novel type of protein carboxyl methyltransferase. We find here, however, that tyrphostin A25 addition to mouse heart cytosol incubated with S-adenosyl-[methyl-3H]methionine or S-adenosyl-[methyl-14C]methionine stimulates the labeling of small molecules in addition to proteins. Base treatment of both protein and small molecule fractions releases volatile radioactivity, suggesting labile ester-like linkages of the labeled methyl group. Production of both the base-volatile product and labeled protein occurs with tyrphostins A25, A47, and A51, but not with thirteen other tyrphostin family members. These active tyrphostins all contain a catechol moiety and are good substrates for recombinant and endogenous catechol-O-methyltransferase. Inhibition of catechol-O-methyltransferase activity with tyrphostin AG1288 prevents both base-volatile product formation and protein labeling from methyl-labeled S-adenosylmethionine in heart, kidney, and liver, but not in testes or brain extracts. These results suggest that the incorporation of methyl groups into protein follows a complex pathway initiated by the methylation of select tyrphostins by endogenous catechol-O-methyltransferase. We suggest that the methylated tyrphostins are further modified in the cell extract and covalently attached to cellular proteins. The presence of endogenous catechols in cells suggests that similar reactions can also occur in vivo.  相似文献   

5.
A new chromatographic catechol O-methyltransferase (COMT) assay based on S-adenosyl- -[methyl-14C]methionine and on-line radioactivity detection was developed. With minor modifications in the mobile phase composition the methylation velocities for 30 structurally diverse compounds including simple catechols, neurotransmitters, catecholestrogens and catecholic drugs could be measured using human and rat recombinant soluble COMT. The enzymes showed very similar substrate selectivities. The radiochemical method was validated using 3,4-dihydroxybenzoic acid as a model substrate and it was shown that accurate and reproducible methylation velocity values could be achieved for both of the catecholic hydroxyls. The method proved to be suited for determining the enzyme kinetic parameters and can probably be further used for gathering enzyme kinetic data on differentially substituted catechols in order to construct proper structure-activity relationships for COMT.  相似文献   

6.
Spermidine synthase (EC 2.5.1.16) was purified to apparent homogeneity (about 11 000-fold) from bovine brain by affinity chromatography, with S-adenosyl-(5')-3-thiopropylamine linked to Sepharose as the adsorbent. The enzyme preparation was free from S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermine synthase (EC 2.5.1.22) activities. The native enzyme had an apparent Mr of 70 000, was composed of two subunits of equal size, and had an isoelectric point at pH 5.22. The apparent Km values for putrescine and decarboxylated adenosylmethionine [S-adenosyl-(5')-3-methylthiopropylamine] were 40 microM and 0.3 microM respectively. Cadaverine and 1,6-diaminohexane could replace putrescine as the aminopropyl acceptor, although the reaction rates were only 6% and 1% respectively of that obtained with putrescine. Ethyl, propyl and carboxymethyl analogues of decarboxy-S-adenosylmethionine could act as propylamine donors. Both the reaction products, spermidine and 5'-methylthioadenosine, were mixed-type inhibitors of the enzyme. On the basis of initial-velocity and product-inhibition studies, a ping-pong reaction mechanism for the spermidine synthase reaction was ruled out.  相似文献   

7.
A number of nucleosides related to S-adenosylmethionine were tested for their inhibitory action on three enzymes involved in the biosynthesis of polyamines. The particular objective of the experiments was to determine whether any of the compounds could be used as selective inhibitors of the synthesis of spermine by spermine synthase. None of the nucleosides examined were potent inhibitors of S-adenosylmethionine decarboxylase. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine dihydrochloride was quite a strong inhibitor of spermidine synthase (I50 of 7 microM) but was more than an order of magnitude less active than S-adenosyl-1,8-diamino-3-thiooctane, which is a mechanism-based inhibitor of this enzyme. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine also inhibited spermine synthase with an I50 of 17 microM, but more selective inhibition of spermine synthase was produced by 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine (I50 of 12 microM) and by dimethyl(5'-adenosyl)sulfonium perchlorate (I50 of 8 microM) since these compounds were much less active against spermidine synthase. Both 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine and dimethyl(5'-adenosyl)sulfonium perchlorate were able to reduce the synthesis of spermine in SV-3T3 cells, but there was a compensatory increase in the concentration of spermidine, and there was no effect on cell growth. These results and those from experiments in which these spermine synthesis inhibitors were combined with inhibitors of spermidine synthase and ornithine decarboxylase indicated that the cells compensated for the inhibition of the aminopropyltransferases by increasing the production of decarboxylated S-adenosylmethionine and putrescine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Nuclei isolated from sea urchin embryos incubated in vitro in the presence of S-adenosyl-[methyl-3H]methionine, methylate their own basic proteins. The protein methylase activity varies during the embryonic development with two peaks of activity at mesenchymal blastula and at young gastrula. Histones H3 and H4 are the main substrates of the reaction. The extent of methylation of the two histones depends on the S-adenosylmethionine concentration. At low S-adenosylmethionine concentrations, the in vitro methyl-accepting ability of H3 is 10-times that of H4, while at high concentrations it is 3-times that of H4. This finding is clearly evident in the equilibrium saturation experiments with blastula and gastrula nuclei, which both show two distinct Km values for S-adenosylmethionine. The major and perhaps only product of methylation is epsilon-N-methyl-lysine. Enzyme activity is clearly correlated with specific embryonic stages, while no correlation is apparent between enzyme activity and the amount of DNA in the embryos.  相似文献   

9.
Summary Based on a structural similarity to the transition state of a propylamine transfer reaction involved in polyamine biosynthesis, Sadenosyl-(5)-1,8-diamino-3-thiooctane (AdoDATO), the most potent inhibitor of spermidine synthases, was used as a hapten for mice immunization. From immunized mice sera, the IgG fractions were purified by means of affinity (protein A/G) chromatography. Sera and purified polyclonal antibodies from several mice were found to exert spermidine synthase-like activity. Moreover, by means means of hybridoma technology, 19 anti-AdoDATO hybridoma clones have been screened for propylamine transfer activity and at least 6 were found to produce catalytic antibodies. These findings indicate the presence in the sera of active spermidine synthase-like catalytic antibodies. The reported results for the first time evidence the feasibility of preparation of N-alkylating antibodies, widening the biotechnological perspectives of antibodies as biocatalysts.Abbreviations AdoDATO S-adenosyl-(5)-1,8-diaminothiooctane - TSA Transition state analog - decAdoMet S-adenosyl-(5)-3-methylthiopropylamine (decarboxylated adenosylmethionine) - KLH keyhole limpet hemocyanin - NMR nuclear magnetic resonance - BSA bovine serum albumine - WSC 1-ethyl-3-(dimethylaminopropyl)carbodiimide (water-soluble carbodiimide) - PBS phosphate buffer saline - OPD orthodiphenylenediamine - TCA trichloroacetic acid - SDS-PAGE sodium duodecylsulphate-polyacrylamide gel electrophoresis - SN2 bimolecular nucleophilic substitution; abzyme catalytic antibody - IgG immunoglobulin G  相似文献   

10.
(Deoxyribonucleic acid from Micrococcus luteus was methylated in vitro in the presence of S-adenosyl-(14C methyl)methionine with a DNA methyltransferase purified from extracts of te. coli infected with bacteriophage T2. The labelled DNA was degraded by enzymatic and specific chemical methods and the resulting short oligonucleotides were separated and characterized. tthe analytical data permit the conclusion that the tdna transmethylase reacts specifically with N-G-A-T-C-N sequences in which it converts adenine to a 6-methyl-aminopurine residue.  相似文献   

11.
Bacterial aminopropyltransferases from Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa were strongly inhibited by S-adenosyl-1,8-diamino-3-thiooctane (AdoDATO) and by dicyclohexylamine. The sensitivity to these drugs in vitro was comparable to that of mammalian spermidine synthase, but AdoDATO was much less potent in reducing spermidine content in the bacteria than in mammalian cells. Although AdoDATO was a stronger inhibitor than dicyclohexylamine in vitro, dicyclohexylamine was more active in reducing bacterial spermidine levels in vivo, suggesting that it is taken up better or is more stable in the cell and is the preferable compound for in vivo studies in microorganisms. The strong inhibition of spermidine synthases by AdoDATO which is a transition state analog supports the concept that these enzymes proceed by a single displacement reaction, rather than by a ping-pong mechanism.  相似文献   

12.
The carboxyl methylation of secretory proteins in vivo was investigated in bovine adrenal medullary cells in culture. Chromogranin A, the major intragranular secretory protein in adrenal medullary cells, and other secretory proteins were found to be carboxyl-methylated within secretory vesicles. The in vivo labeling pattern using [methyl-3H]methionine and the in vitro labeling pattern using S-adenosyl-[methyl-14C]methionine of intravesicular secretory proteins were similar. The detection of methylated chromogranin A in mature secretory vesicles required 3-6 h, a time consistent with the synthesis and storage of secretory proteins in this tissue. Carboxyl-methylated chromogranin A was secreted from medullary cells by exocytosis via activation of nicotinic cholinergic receptor and recovered still under the methylated form in the incubation medium. Since protein-carboxyl-methylase is cytosolic, these results suggest that methylation of secretory proteins is a cotranslational phenomenon.  相似文献   

13.
We have identified a mammalian arginine N-methyltransferase, PRMT7, that can catalyze the formation of omega-NG-monomethylarginine in peptides. This protein is encoded by a gene on human chromosome 16q22.1 (human locus AK001502). We expressed a full-length human cDNA construct in Escherichia coli as a glutathione S-transferase (GST) fusion protein. We found that GST-tagged PRMT7 catalyzes the S-adenosyl-[methyl-3H]-l-methionine-dependent methylation of the synthetic peptide GGPGGRGGPGG-NH2 (R1). The radiolabeled peptide was purified by high-pressure liquid chromatography and acid hydrolyzed to free amino acids. When the hydrolyzed products were separated by high-resolution cation-exchange chromatography, we were able to detect one tritiated species which co-migrated with an omega-NG-monomethylarginine standard. Surprisingly, GST-PRMT7 was not able to catalyze the in vitro methylation of a GST-fibrillarin (amino acids 1-148) fusion protein (GST-GAR), a methyl-accepting substrate for the previously characterized PRMT1, PRMT3, PRMT4, PRMT5, and PRMT6 enzymes. Nor was it able to methylate myelin basic protein or histone H2A, in vitro substrates of PRMT5. This specificity distinguishes PRMT7 from all of the other known arginine methyltransferases. An additional unique feature of PRMT7 is that it seems to have arisen from a gene duplication event and contains two putative AdoMet-binding motifs. To see if both motifs were necessary for activity, each putative domain was expressed as a GST-fusion and tested for activity with peptides R1 and R2 (acetyl-GGRGG-NH2). These truncated proteins were enzymatically inactive, suggesting that both domains are required for functionality.  相似文献   

14.
研究了采用热水法直接提取酿酒酵母胞内产物S-腺苷-L-甲硫氨酸(SAM)北京,并且通过实验对影响SAM抽提的5个条件:抽提温度、抽提时间、热水用量、搅拌转速、硫酸用量等进行了优化。得出的最佳实验条件为:温度70℃、每30g湿菌体加入热水100mL、硫酸浓度0.25mol/L、搅拌转速160r/min,此时SAM的抽提率可达91.5%。与其他方法相比,该方法耗时少、仪器简单、抽提液中S-腺苷-L-甲硫氨酸质量浓度高、经济且无污染。  相似文献   

15.
The aqueous extract of dried bonito (Katsuobushi) was distilled by using a thin film evaporator. The resulting distillate was extracted with diethyl ether, and the extract was separated into basic, acidic, weak acidic, and neutral fractions.

The basic, acidic, and weak acidic fractions were analyzed by gas chromatography and gas chromatography-mass spectrometry.

Seventy-four compounds, including 24 acids, 24 phenols, 8 pyridines, 12 pyrazines, 3 thiazoles, and 3 other compounds were identified. Thirty-six of these compounds were newly identified as volatile flavor compounds of Katsuobushi.  相似文献   

16.
17.
18.
The HSL7 (histone synthetic lethal 7) gene in the yeast Saccharomyces cerevisiae encodes a protein with close sequence similarity to the mammalian PRMT5 protein, a member of the class of protein arginine methyltransferases that catalyses the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N'(G)-dimethylarginine residues in a number of methyl-accepting species. A full-length HSL7 construct was expressed as a FLAG-tagged protein in Saccharomyces cerevisiae. We found that FLAG-tagged Hsl7 effectively catalyses the transfer of methyl groups from S-adenosyl-[methyl-3H]-L-methionine to calf thymus histone H2A. When the acid-hydrolysed radiolabelled protein products were separated by high-resolution cation-exchange chromatography, we were able to detect one tritiated species that co-migrated with an omega-N(G)-monomethylarginine standard. No radioactivity was observed that co-migrated with either the asymmetric or symmetric dimethylated derivatives. In control experiments, no methylation of histone H2A was found with two mutant constructs of Hsl7. Surprisingly, FLAG-Hsl7 does not appear to effectively catalyse the in vitro methylation of a GST (glutathione S-transferase)-GAR [glycine- and arginine-rich human fibrillarin-(1-148) peptide] fusion protein or bovine brain myelin basic protein, both good methyl-accepting substrates for the human homologue PRMT5. Additionally, FLAG-Hsl7 demonstrates no activity on purified calf thymus histones H1, H2B, H3 or H4. GST-Rmt1, the GST-fusion protein of the major yeast protein arginine methyltransferase, was also found to methylate calf thymus histone H2A. Although we detected Rmt1-dependent arginine methylation in vivo in purified yeast histones H2A, H2B, H3 and H4, we found no evidence for Hsl7-dependent methylation of endogenous yeast histones. The physiological substrates of the Hsl7 enzyme remain to be identified.  相似文献   

19.
The γ polypeptide of brain G-proteins is carboxyl methylated when the purified βγ subunit complex is reconstituted with S-adenosyl-[3H-methyl]-L-methionine and a methyltransferase present in detergent-stripped brain membranes. By Chromatographic analysis of the 3H-amino acid generated by exhaustive proteolysis and performic acid oxidation of the 3H-methylated βγ complex, we show that this modification occurs on the -carboxyl group of a C-terminal cysteine residue. Our result suggests that brain G-proteins may undergo multiple covalent modification steps, including proteolytic removal of the three terminal amino acids from the predicted common C-terminal Cys-Xaa-Xaa-Xaa sequence, and the methyl esterification of the resulting terminal cysteine residue. This modification is likely to be associated with lipidation at the sulfhydryl group of the same cysteine, which would explain the tight membrane binding property of the brain βγ complex.  相似文献   

20.
The active component(s) in yeast extract required by Thermoplasma acidophilum for growth is polypeptide in nature. A fraction from yeast extract was isolated and partially characterized as one or more peptides of molecular weight about 1,000 containing 8 to 10 amino acids. Although it was composed largely of basic and dicarboxylic amino acids, only one amino group per molecule was free. The polypeptide(s) appeared to bind avidly to cations. No other organic compounds except glucose were needed by Thermoplasma. Among several hundred known compounds tested, only glutathione plus Fe2+ or Fe3+, clostridial ferredoxin, and spinach ferredoxin elicited any growth response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号