首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Volume-dependent changes in light scatter have been shown to be a linear function of the osmotic gradient imposed upon gastric vesicles purified from hog gastric mucosa. Observation of the light scattered 90° to incident, using the Durrum stop flow system D-110, indicates that the vesicles exposed to hypertonic medium undergo rapid shrinkage due to water loss from the vesicle interior. The rate constant for this water movement is 1.1±0.09 sec–1 (n=10) and is linearly dependent on temperature between 16 and 36°C. The activation energy of 13.93±0.60 kcal mole–1 (n=3), calculated from an Arrhenius plot, is inconsistent with water movement facilitated by a large-pore aqueous channel. A slower reswell phase, dependent on solute entry into the intravesicular space, follows the water-dependent shrink phase. KCl entry, studied because of the intravesicular requirement for active K+/H+ transport, exhibits two entry stages. The faster, described by a single exponential imposed upon a constantly sloping background, has a rate constant of 7.75±0.48×10–3 sec–1 (n=15). The slower phase, which typically accounts for 90% of the reswell process, demonstrates a rate constant of 1.94±0.23×10–4 sec–1 (n=15). In the presence of valinomycin or nigericin, two fast rate constants and one slow rate constant of swelling are observed. The rate constant of the faster reswell phase is increased from 7.75±0.48×10–3 sec–1 (n=15) to 15.74±3.7×10–3 sec–1 (n=5) and 17.23±3.4×10–3 (n=3) by the addition of nigericin (1 g ml–1) and valinomycin (4.5 m), respectively. The second part of the faster reswell phase is approximately that seen in the control population. Transport-dependent volume changes of significant magnitude can be demonstrated following the addition of ATP to vesicles equilibrated with 150mm KCl. The volume change is a function of HCl leak rate and is abolished by ionophores which eliminate the transport-dependent pH gradient. So 4 –- substitution, which eliminates the overshoot phenomena observed in KCl medium, also eliminates the shrinkage resulting from ATP addition.  相似文献   

2.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

3.
Summary Then-alkyl bromides with 6 to 10 carbons induce formation of vesicles of 5 to 100 m diameter from the small vesicles (0.1 m average diameter) produced by disruption of the discs from frog rod photoreceptors. Then-alkanes,n-alkyl iodides andn-alkyl chlorides are relatively ineffective. The formation of large vesicles is independent of calcium concentration and is distinguished from fusion processes previously reported by the large number of vesicles involved. The results reported here together with others suggest the occurrence of multiple fusion (and/or rupture-resealing) events between vesicles, induced by then-alkyl bromides.  相似文献   

4.
Summary Paired toad urinary bladders were prepared without or with an osmotic gradient (175 mosm) across them, stimulated for 2.5 (n=6), 5 (n=6), 30 (n=6) or 60 (n=6) min with ADH (20 mU/ml), and studied by freeze-fracture electron microscopy. Water permeability at these times was assessed in additional bladders (n=6 for each case) after tissue fixation according to the technique of Eggena. After both 60 and 30 min of ADH stimulation, the presence of a gradient compared with the absence of one was associated with fewer aggregates (242±35vs. 382±14 ×235 m–2 at 60 min,P<0.01; 279±36vs. 470±51 ×235 m–2 at 30 min,P<0.01) and lower water permeability (8.4±1.1vs. 18.8±1.8g×min–1×cm–1 ×mosm –1 at60min,P<0.005; 9.2±1.0vs. 22.0±2.1 g ×min–1×cm–2×mosm –1 at 30 min,P<0.001). In addition, with a gradient both maximum water permeability and maximum aggregate frequency were reached nearly together; a similar correspondence occurred without a gradient. We conclude that in the presence of an osmotic gradient both the ADH-associated aggregates and the water permeability response to ADH are prevented from reaching the higher levels observed in bladders not exposed to a gradient.  相似文献   

5.
Pinus pumila (Pallas) Regel. is a dominant dwarf tree in alpine regions of Japan. The possible factors limiting the net photosynthetic rate (Pn) of the needles of P. pumila were examined in the snow-melting (May) and the summer (August) seasons. In August, in situ maximum Pn was 20 mol kg–1 needle s–1 in the current-year needles and 25 mol kg–1 needle s–1 in the 1-year-old needles. Diurnal trends of Pn in August were positively related to fluctuations in photosynthetic photon flux density (PPFD) and no midday depression of Pn was found, indicating that a decrease in PPFD rather than an increase in needle-to-air vapor pressure deficit (W) might cause the reduction of Pn. Both stomatal conductance (gs) and Pn were lower in May than in August. In May, Pn and gs were almost zero in the morning, but gradually increased with decreasing W, reaching maximum Pn values (4 mol kg–1 needle s–1) and gs (60 mmol kg–1 needle s–1) at 16.00 hours. The daytime Pn in May was positively related to gs. Relative water content in the exposed needles above the snow in May was 83%, which was far above the lethal level. This indicates that the water flow from stems or soils to needles was enough to compensate for a small amount of water loss due to the low gs in May, although the water supplied to needles would be impeded by the low temperatures. Thus, the reduced gs in May would be important for avoiding needle desiccation, and would result in a reduced Pn.  相似文献   

6.
Summary The nucleoside transport activity of human placental syncytiotrophoblast brush-border and basal membrane vesicles was compared. Adenosine and uridine were taken up into an osmotically active space. Adenosine was rapidly metabolized to inosine, metabolism was blocked by preincubating vesicles with 2-deoxycoformycin, and subsequent adenosine uptake studies were performed in the presence of 2-deoxycoformycin. Adenosine influx by brush-border membrane vesicles was fitted to a two-component system consisting of a saturable system with apparent Michaelis-Menten kinetics (apparentK m approx. 150 m) and a linear component. Adenosine uptake by the saturable system was blocked by nitrobenzylthioinosine (NBMPR), dilazep, dipyridamole and other nucleosides. Inhibition by NBMPR was associated with high-affinity binding of NBMPR to the brush-border membrane vesicles (apparentK d 0.98±0.21nm). Binding of NBMPR to these sites was blocked by adenosine, inosine, uridine, thymidine, dilazep and dipyridamole, and the respective apparentK i values were 0.23±0.012, 0.36±0.035, 0.78±0.1, 0.70±0.12 (mm), and 0.12 and 4.2±1.4 (nm). In contrast, adenosine influx by basal membrane vesicles was low (less than 10% of the rate observed with brush-border membrane vesicles under similar conditions), and hence no quantitative studies of adenosine uptake could be performed with these vesicles. Nevertheless, high-affinity NBMPR binding sites were demonstrated in basal membrane vesicles with similar properties to those in brushborder membrane vesicles (apparentK d 1.05±0.13nM and apparentK i values for adenosine, inosine, uridine, thymidine, dilazep and dipyridamole of 0.14±0.045, 0.54±0.046, 1.26±0.20, 1.09±0.18mm and 0.14 and 3.7±0.5nm, respectively). Exposure of both membrane vesicles to UV light in the presence of [3H]NBMPR resulted in covalent labeling of a membrane protein(s) with a broad apparentM r on SDS gel electropherograms of 77,000–45,000, similar to that previously reported for many other tissues, including human erythrocytes. We conclude that the maternal (brush-border) and fetal (basal) surface of the human placental syncytiotrophoblast posses broad-specificity, facilitated-diffusion, NBMPR-sensitive nucleoside transporters.  相似文献   

7.
The three-dimensional crystal structure of the DNA/RNA nonspecific endonuclease from Serratia marcescenswas refined at the resolution of 1.07 Å to Rfactor of 12.4% and R freefactor of 15.3% using the anisotropic approximation. The structure includes 3924 non-hydrogen atoms, 715 protein-bound water molecules, and a Mg2+ion in each binding site of each subunit of the nuclease homodimeric globular molecule. The 3D topological model of the enzyme was revealed, the inner symmetry of the monomers in its N-and C-termini was found, and the local environment of the magnesium cofactor in the nuclease active site was defined. Mg2+ion was found to be bound to the Asn119 residue and surrounded by five associated water molecules that form an octahedral configuration. The coordination distances for the water molecules and the O1atom of Asn119 were shown to be within the range of 2.01–2.11 Å. The thermal factors for the magnesium ion in subunits are 7.08 and 4.60 Å2, and the average thermal factors for the surrounding water molecules are 11.14 and 10.30 Å2, respectively. The region of the nuclease subunit interactions was localized, and the alternative side chain conformations were defined for 51 amino acid residues of the nuclease dimer.  相似文献   

8.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

9.
A possible modulation of permeabilities of membrane vesicles to anions and cations was explored by light scattering techniques, evaluated by measuring the capacity of the vesicles to shrink and swell in response to changes of the osmolarity of the incubation medium. Membrane fractions were obtained by phase partition. Purity was evaluated by detection and quantification of membrane enzyme markers: vanadate-sensitive ATPase for the plasma membrane, nitrate-sensitive ATPase for the tonoplast and azide-sensitive ATPase for mitochondria. Membrane vesicles (250 g protein) were exposed to hypertonic solutions of salts (0.6 osmolar). Kinetics of the changes in apparent absorbance at 546 nm were observed by the addition of potassium, nitrate and chloride salts. The diffusion of ions into vesicles was induced by an osmotic gradient across the membrane and brought about volume changes of vesicles. Upon addition of vesicles to the different solutions the following ion permselectivity sequences were observed: PNO 3 >PCl >PSO 4 2– and PK +PNa +>PNH 4 +.Abbreviations ATP adenosine 5-triphosphate - EDTA ethylene diaminetetraacetic acid - Tris-Mes (Tris[hydroxymethyl]aminomethane, Mes-(2-[N-Morpholino]ethanesulfonic acid) - PEG polyethylene glycol  相似文献   

10.
Summary Using the method of dehydration and rehydration, rough endoplasmic reticulum (RER) vesicles, isolated by differential centrifugation, can be enlarged to giant liposomes with diameters ranging from 5 to 200 m. Patch-clamp studies on these giant RER liposomes revealed the existence of a channel with a mean conductance of 260±7 pS (n=23; 140 mmol/liter KCl on both sides). The channel is about four times more permeable for Cl than for K+. Its activity is strongly voltage regulated. At low potentials (±20 mV) the channel is predominantly in its open state with an open probability near 1.0, whereas it closes permanently at high positive and negative voltages (±70 mV). The channel activity is not influenced by changing the free Ca2+ concentration from 1 mmol/liter to less than 10–9 mol/liter on either side, and is also not affected by typical Cl-channel blockers like diphenylamine-2-carboxylate (DPC, 1 mmol/liter) or 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS, 1 mmol/liter). Another chloride channel with a singlechannel conductance of 79±6 pS (n=4) was less frequently observed. In the potential range of –80 to +40 mV this channel displayed no voltage-dependent gating. We assume that these anion channels are involved in the maintenance of electroneutrality during Ca2+ uptake in the RER.  相似文献   

11.
The impact of hydrological manipulation of an unfertilised, Dutch peat grassland area on plant species composition on ditch banks and in ditchwater was studied. The hydrological manipulation involved raising the groundwater level by admitting nutrient-poor, Ca-rich groundwater in one compartment, and by retaining precipitation in another compartment. A third compartment served as control.The plant species composition showed significant correlations with the following hydrochemical parameters: in bank vegetation with K+ concentration, and winter and summer groundwater levels, water depth and elevation; in aquatic vegetation with pH, the concentrations of Cl- organic-C and NH4 + water temperature and elevation.The number of terrestrial plant species increased after compartmentation from 97 to 122; 16 submerged and floating species were found. Most new terrestrial species probably emerged in response to cessation of fertilization and biomass removal, since they showed no preference for any compartment. Five species showed preference for the groundwater compartment and two for the rainwater compartment. Of the new terrestrial plants, seven were relatively rare: Carex panicea, C. oederi, C. pallescens, C. vesicaria, Galium uliginosum, Juncus acutiflorus and Stellaria uliginosa. Of the aquatic plants, eight were relatively rare: Chara globularis, two Callitriche spp., four potamogetonaceae and Ranunculus circinatus.This study indicates that hydrological manipulation of grassland systems in which fertilisation has ceased has profound effects on the vegetation in the ditches of these systems. Bank vegetation responds more slowly and to other hydrochemical factors than aquatic vegetation. Short-term responses in terms of increase in diversity of vegetation pattern and species richness are promising. Long-term responses are not yet known.  相似文献   

12.
Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme strain BU1 (Green sulfur bacteria) was investigated under various laboratory conditions. Cells formed gas vesicles exclusively at light intensities below 5 mol · m-2 · s-1 in the stationary phase. No effect of incubation temperature or nutrient limitation was observed. Gas space of gas vesicles occupied always less than 1.2% of the total cell volume. A maximum cell turgor pressure of 330 kPa was determined which is comparable to values determined for cyanobacterial species. Since a pressure of at least 485 kPa was required to collapse the weakest gas vesicles in Pelodictyon phaeoclathratiforme, short-term regulation of cell density by the turgor pressure mechanism can be excluded.Instead, regulation of the cell density is accomplished by the cease of gas vacuole production and accumulation of carbohydrate at high light intensity. The carbohydrate content of exponentially growing cells increased with light intensity, reaching a maximum of 35% of dry cell mass above 10 mol · m-2 · s-1. Density of the cells increased concomitantly. At maximum density, protein and carbohydrate together accounted for 62% of the total cell ballast. Cells harvested in the stationary phase had a significantly lower carbohydrate content (8–12% of the dry cell mass) and cell density (1010–1014 kg · m-3 with gas vesicles collapsed) which in this case was independent of light intensity. Due to the presence of gas vesicles in these cultures, the density of cells reached a minimum value of 998.5 kg · m-3 at 0.5 mol · m-2 · s-1.The cell volume during the stationary phase was three times higher than during exponential growth, leading to considerable changes in the buoyancy of Pelodictyon phaeoclathratiforme. Microscopic observations indicate that extracellular slime layers may contribute to these variations of cell volume.  相似文献   

13.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

14.
The adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as well as of other dipolar molecules to the interface of artificial lipid membranes gives rise to a change of the dipole potential between the membrane interior and water. As a consequence of the adsorption of the neutral species, the conductance of planar membranes, observed in the presence of the macrocyclic ion carriers nonactin or valinomycin, may change by many orders of magnitude. Using this effect in combination with a laser-T-jump technique, the kinetics of the adsorption process were measured and were interpreted on the basis of a Langmuir-isotherm. A partition coefficient (at small concentrations) of HA =4.7·10–4 cm, a rate constant of desorption k HA100 s-1 and a maximum surface density N D=7.7·1013/cm2 were found. The concentration at half saturation is K HA=2.7·10-4 M.Using these values the membrane conductance induced by the ion carrier nonactin and the shape of the current-voltage relationship as a function of the ligand concentration in water was analyzed. A maxiumum dipole potential of V D max =-239 m V and a contribution of b=3.1·10-15V cm2 per single adsorbed 2,4-D molecule was found. 74% of the dipole potential acts on the inner membrane barrier separating the two interfacial adsorption planes of nonactin. The remainder (26%) favours interfacial complex formation between nonactin and K+ from the aqueous phase. The data hold for membranes formed from dioleoyllecithin in n-decane.  相似文献   

15.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

16.
Summary Conopid flies (Conopidae, Diptera) are common larval parasites of bumblebees. The larva develops inside the abdomen of workers, queens and males. Development is completed within 10–12 days after oviposition when the host is killed and the parasite pupates in situ. Development results in parasitised bees becoming unable to carry large loads of nectar, as the conopid larvae reside where the honey crop is normally located. Furthermore, an addition to the bee's unloaden body mass is likely (average larval weight reached at pupation by the common parasite species Sicus ferrugineus: ±SD 36.3±12.3 mg, n=59; by Physocephala rufipes: 55.8±16.9 mg, n=108). We here asked whether the propensity of workers of the bumblebee Bombus pascuorum to collect nectar rather than pollen is related to the presence of conopid larvae. For samples of bees (n=2254 workers) collected over 3 years of field studies in northwestern Switzerland, there was no difference in the frequency of bees caught as pollen collectors among parasitised (38.1% of cases, n=210) as compared to non-parastised bees (43.9%, n=360) ( 2=1.83, n.s.). However, compared to the non-parasitised bees (n=360), those hosts containing a third (last) instar larva (n=9) were less likely to collect pollen than expected by chance 2=6.91, P=0.003. Similarly, hosts with short survival time between capture and being killed by the developing larva (which hence must have harboured a late instar parasite at time of capture) were less likely to collect pollen (8%, n=25) than those found not parasitised (37.6%, n=891 2=9.16, P<0.001). Late instar larvae grow so big that they fill the entire abdomen. Although there was also a tendency for presumably older bees to collect less pollen, this is unlikely to explain the observations. We also discuss whether these changes in foraging behaviour of bumblebees may reflect a host-parasite conflict over the type of resource to be collected.  相似文献   

17.
The surface distribution of chlorophyll a (chl a) from size-fractionated phytoplankton and of particulate organic matter was studied along the Strait of Magellan during late austral summer (February 20th to March 2nd, 1991), in order to contribute an outline of the ecological characteristics of its pelagic compartment. Sampling of surface water was carried out at 2.5 mile intervals, yielding 152 sampling points for chl a and 104 for particulate organic carbon (POC). The Strait appeared as a system strongly controlled by land forcing. Its phytoplankton community was dominated by the picoplanktonic fraction along its entire length, with mean chl a concentrations of 0.74 and 1.17 g dm–3 for pico- and total phytoplankton, respectively. The microphytoplankton never exceeded 0.02 g dm–3. POC concentrations, with a maximum of 242.5 and a mean of 144.8 g dm–3, were mainly of autotrophic origin, as indicated by a mean POC:chl a ratio of 138.4.  相似文献   

18.
Fermentation experiments were performed to obtain time-dependent data on broth rheology for three filamentous microorganisms, Streptomyces rimosus, Actinomadura roseorufa and Saccharopolyspora erythraea, cultivated under standard conditions in a mechanically stirred bioreactor. Rheological data were successfully analysed using Mitschka's technique and flow curves of the cultures described by the power law model in the range of shear rate between 5 and 100 s–1. Consistency coefficients of the cultures were found to vary continuously with fermentation time while flow behaviour index fell sharply within the first few hours of cultivation and then remained practically unchanged till the end of fermentation. The pH of the biomass was found to have a strong influence on both consistency coefficient and flow behaviour index.List of Symbols k n Mitschka shear rate constant - K consistency coefficient (Pa s n ) - n flow behaviour index (–) - N spindle speed (rps) - T torque on spindle (Nm) - gg A average shear rate (s–1)  相似文献   

19.
20.
Summary Endocytotic vesicles from rat kidney cortex, isolated by differential centrifugation and enriched on a Percoll gradient, contain both an electrogenic H+ translocation system and a conductive chloride pathway. Using the dehydration/rehydration method, we fused vesicles of enriched endosomal vesicle preparations and thereby made them accessible to the patch-clamp technique. In the fused vesicles, we observed Cl channels with a single-channel conductance of 73±2 pS in symmetrical 140mm KCl solution (n=25). The current-voltage relationship was linear in the range of –60 to +80 mV, but channel kinetic properties dependended on the clamp potential. At positive potentials, two sublevels of conductance were discernible and the mean open time of the channel was 10–15 msec. At negative voltages, only one substate could be resolved and the mean open time decreased to 2–6 msec. Clamp voltages more negative than –50 mV caused reversible channel inactivation. The channel was selective for anions over cations. Ion substitution experiments revealed an anion permeability sequence of Cl=Br=I>SO 4 2– F. Gluconate, methanesulfonate and cyclamate were impermeable. The anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, 1.0mm) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 0.1mm) totally inhibited channel activity. Comparisons with data obtained from radiolabeled Cl-flux measurements and studies on the H+ pump activity in endocytotic vesicle suspensions suggest that the channel described here is involved in maintenance of electroneutrality during ATP-driven H+ uptake into the endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号