首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated a “soluble” fraction of Streptomyces albus G membranes or membranes previously solubilised by sodium dodecylsulphate, using n-butanol extraction. Polyacrylamide gel electrophoresis in sodium dodecylsulphate of the whole membrane showed a complex protein pattern (about 20–25 bands) with two predominant groups. The “soluble” fraction represented about 25% of the membrane protein and contained part of the major polypeptides. The yield of protein in “soluble” form decreased when membranes were suspended in water and di not significantly change if membranes were reduced with sodium dithionite and then treated with iodoacetamide. A change in relative mobility of some of these polypeptides seemed to occur with membrane delipidation. The proteins of the fraction appear to be glycoproteins as indicated by their simultaneous staining for protein and carbohydrate and the parallel sensitivity to trypsin of both stains. The apparent molecular weights by sodium dodecylsulphate gel electrophoresis of the proteins (glycoproteins) were: 63 000, 40 000 and 17 000. Similar protein patterns were obtained by extraction of the membranes with EDTA and non-ionic detergents. Lipid and nucleotide material were also found in the “soluble” fraction.The “soluble” fraction showed by gel filtration on Sephadex G-200 the existence of different states of aggregation. These states of aggregation revealed the same electrophoretic pattern of proteins, which seemingly corresponded to that of the original fraction (i.e. three protein groups with relative mobilities 0.65, 0.80 and 1.0). Treatment of the samples under different conditions with 1% dodecylsulphate (supplemented or not with 0.5% β-mercaptoethanol) failed to completely dissociate the fraction as shown by Sephadex filtration.  相似文献   

2.
1) Catalase from green leaves of Lens culinaris (lentils) was investigated with respect to isoenzyme patterns. In contrast to other plants, which have been reported to contain multiple forms of catalase, only one form of this enzyme was revealed when crude extracts were subjected to starch gel electrophoresis or to polyacrylamide disc-gel electrophoresis. Furthermore, catalases from leaves, stems and cotyledons were electrophoretically identical. 2) The leaf enzyme has been purified by conventional methods to apparent homogeneity. It has a molecular weight of 225 000 (ultracentrifuge) and is composed of four identical subunits of molecular weight 54 000 (sodium dodecylsulphate gel electrophoresis). The ratio A280/A405 of the pure enzyme was found to be 1.5. The isoelectric point is at pH 5.5. The enzyme, very labile at pH-values below 7.0, is stable in Tris chloride and potassium phosphate buffers between pH 7.5 and 9.5. It is slowly inactivated by 1mM dithiothreitol and is rapidly inactivated by 1mM mercaptoethanol. 3) The catalase was shown to be the major protein component of the peroxisomal matrix. It could not be detected at the membranes of the leaf peroxisomes.  相似文献   

3.
The carbohydrate content of mesosomal membranes of Micrococcus lysodeikticus has been shown to be consistently higher (about four times) than that of corresponding plasma membrane preparations. Analysis of washed membrane fractions by gas-liquid chromatography indicated that mannose was the major neutral sugar of both types of membrane (accounting for 95 and 89%, respectively, of the mesosomal and plasma membrane carbohydrate). Small amounts of inositol, glucose and ribose were also detected. We have shown by polyacrylamide gel electrophoresis in sodium dodecylsulphate and by precipitation and agar gel diffusion experiments with concanavalin A that a mannan is the major carbohydrate component of both types of membrane. This polymer can be selectively released from mesosomal membranes by a simple procedure involving low ionic strength-shock and heating to 80 degrees C for 1 min, and purified by ultrafiltration and ethanol precipitation. The mannan contains mannose as the only neutral carbohydrate, is not phosphorylated and does not contain significant amounts of amino sugars or uronic acids. Agar gel electrophoresis experiments, however, indicate an anionic polymer whose acidic properties are eliminated upon mild base hydrolysis. Analysis of native mannan by infrared spectroscopy reveals absorption bands attributable to ester carbonyl groups and to carboxylate ions, consistent with the presence of succinyl residues in the polymer (Owen, P. and Salton, M.R.J. (1975) Biochem, Biophys. Res. Commun. 63, 875--800). A sedimentation coefficient of 1.39 S was obtained by analytical ultracentrifugation in 1.0 M NaCl and a value of one reducing equivalent per 50 mannose residues by reduction with NaB3H4. The polysaccharide was only slightly degraded (2%) by jack bean alpha-mannosidase and could precipitate 15 times its own weight of concanavalin A. The acidic polymers was also detected in the cell "periplasm" and was secreted from cells grown in defined media during the period of decelerating growth.  相似文献   

4.
The membrane binding sites for lipopolysaccharide (LPS) were isolated by affinity chromatography of the solubilized membranes prepared from 125I-labeled mouse B-cells and T-cells on an affinity adsorbent prepared by coupling Salmonella minnesota R595 LPS to activated Sepharose 4B. The membrane proteins bound to the affinity adsorbent and eluted with 1.0% Triton X-100 were analyzed according to their mobility on polyacrylamide gel electrophoresis in sodium dodecylsulphate. These membrane proteins were further identified by immunoprecipitation with specific antisera. Immunoglobulins, possibly immunoglobulins M and D, were identified in the eluate from the B-cell membranes. The histocompatibility-2-complex proteins (H-2D, H-2K and Ia antigens) were also found to be binding sites for LPS on both B-cells and T-cells.  相似文献   

5.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) is composed of two subunits. Each subunit has a molecular weight of approx. 63000 and, according to the iron determination, contains two hemes. Cytochrome oxidase was subjected to various dissociation procedures to determine the stability of the dimeric structure. Progressive succinylation of 14 to 68% of the lysine residues of the enzyme increases the amount of the protein appearing in the subunit form (S20,W approximately 4 S) from 18 to 92%. At a high degree of succinylation a component with a sedimentation coefficient of approx. 2 S appears. The subunits with sedimentation coefficients of approx. 4 S and 2 S are also formed when the pH is below 4 or above 11. The same molecular weight (63000) was found for these two components in sodium dodecylsulphate electrophoresis. No dissociation of cytochrome oxidase was observed in salt solutions like 3 M NaC1 and 1 M Na2SO4, or in 6 M urea. The slight decrease in the sedimentation coefficients in NaC1 solutions is partly explained by preferential hydratation of the protein.  相似文献   

6.
alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not show the proteinase-binding activity characteristic of the intact alpha 2M. F-alpha 2M was less easily dissociated than was S-alpha 2M. S-alpha 2M was readily dissociated to the quarter-subunits by mild reduction, with the formation of 3-4 new thiol groups per subunit. Inact reactive alpha 2M could then be regenerated in high yield by reoxidation of the subunits. F-alpha 2M formed by reaction with a proteinase or ammonium salts was not dissociated under the same conditions, although the interchain disulphide bonds were reduced. If the thiol groups of the quarter-subunits of S-alpha 2M were blocked by carboxymethylation, oxidative reassociation did not occur. Nevertheless treatment of these subunits with methylammonium salts or a proteinase caused the reassembly of half-molecules and intact (F-) tetramers. It is emphasized that F-alpha 2M does not have the properties of a denatured form of the protein...  相似文献   

7.
The results reported in this paper show two distinct ways for the incorporation ofN-acetylglucosamine into mitochondrial outer membranes. The first one is the glycosylation of dolichol acceptors, which is indicated by the inhibition of the synthesis of these products by the inhibitors of the dolichol intermediates (tunicamycin and GDP). The second one is the incorporation ofN-acetylglucosamine into protein acceptors directly from UDP-N-acetylglucosamine. This second way of glycosylation is only localized in mitochondria outer membranes.The existence of a direct route forN-glycoprotein biosynthesis has been based on the following evidence. First, the synthesis of theN-acetylglucosaminylated protein acceptors was not inhibited by tunicamycin or GDP. Second, the addition of exogenous dolichol-phosphate did not change the rate of biosynthesis of glycosylated protein material. Third, the sequential incorporation ofN-acetylglucosamine and mannose from their nucleotide derivatives in the presence of GDP and tunicamycin led to the synthesis of glycosylated protein material which entirely bound to Concanavalin A-Sepharose. The oligosaccharide moiety of the glycosylated protein material resulting from the direct transfer of sugars from their nucleotide derivatives to the protein acceptor is of theN-glycan type. On sodium dodecylsulphate polyacrylamide gel electrophoresis, this glycosylated material migrated as a marker protein with a molecular weight between 45 000 and 63 000. HPLC chromatofocusing analysis revealed that the fraction studied was anionic. The oligosaccharide moiety of the glycoprotein material can only be elongated by the incorporation ofN-acetylglucosamine and galactose from their nucleotide derivatives.  相似文献   

8.
Two polypeptide fractions have been purified from a “soluble” fraction of n-butanol-extracted Streptomyces albus membranes by preparative electrophoresis in sodium dodecylsulphate. They accounted for approx. 80% of the protein of the fraction (i.e. 20% of the total membrane protein). The ultraviolet spectrum of Group 1 (relative mobility 1.0) revealed the presence of nucleotide material, while that of Group 3 (relative mobility 0.65±0.05) showed the presence of a possibly aggregated protein-like material. About 100 and 30% of the protein contents (Lowry method) of Groups 3 and 1, respectively, were recovered as amino acid residues. These results confirm the protein nature of both fractions and suggest an overestimation of the protein value in Group 1. Both polypeptide groups can be classified as “extrinsic” membrane proteins on the basis of their similar amino acid composition (Vanderkooi, G. and Capaldi, R. A. (1972) Ann. N.Y. Acad. Sci. 195, 135–138). Three N-terminal amino acids were found in each fraction: one common (alanine), methionine, leucine or isoleucine (Group 3) and glutamic acid, lysine (Group 1). The sedimentation coefficients calculated were 2.46 S for Group 3 and 1.54 S for Group 1. Analysis of the isolated groups by gel electrophoresis under non-dissociating conditions or with Triton X-100, gave aggregate-like patterns.Sodium dodecylsulphate electrophoresis revealed an anomalous staining behaviour of Group 3 depending upon the dissociating conditions. The whole “soluble” fraction bound 0.40 mg dodecylsulphate /mg protein (0.55 mg detergent/mg protein corrected for overestimation). After dialysis, the fraction retained 10% of the bound dodecylsulphate. Circular dichroism of the isolated groups after exhaustive dialysis showed similar spectra, although of lower dichroism, to those obtained by other authors on soluble enzymes treated with sodium dodecylsulphate. Strong acid conditions were required to change the CD spectra of the polypeptides.  相似文献   

9.
Using the technique of affinity chromatography on a myo-inositol-substituted Sepharose, the myo-inositol oxygenase from rat kidneys was purified to homogeneity. The active enzyme contains iron, most probably in its divalent form. Electrophoresis on polyacrylamide gel containing sodium dodecylsulphate causes the cleavage of the enzyme protein into apparently identical subunits with a molecular weight of approximately 17,000. The smallest active unit consists of 4 subunits, and is in a pH-dependent equilibium with species consisting of 8, 12, and 16 subunits, respectively, which all show the same specific enzyme activity. In the presence of oxygen the enzyme is highly unstable; at the early stages of inactivation it can be reactivated by reducing agents like NaBH4. Under anaerobic conditions or under the influence of Fe2-chelating agents, the enzyme is also inactivated; this inactivation is caused by the loss of iron and concomitant cleavage into the subunits. It can be reversed by incubation with FeSO4 in the presence of air. If myo-inositol and FeSO4 are present, the reactivation involves an oligomerization to the species with 16 subunits with the uptake of 8 gram-atoms of iron per mole of this species. The enzyme reaction follows Michaelis-Menten kinetics; the Michaelis constants are 4.5 x 10(-2)M for myo-inositol and 9.5 x 10(-6)M for oxygen.  相似文献   

10.
The carbohydrate content of mesosomal membranes of Micrococcus lysodeikticus has been shown to be consistently higher (about four times) than that of corresponding plasma membrane preparations. Analysis of washed membrane fractions by gas-liquid chromatography indicated that mannose was the major neutral sugar of both types of membrane (accounting for 95 and 89%, respectively, of the mesosomal and plasma membrane carbohydrate). Small amounts of inositol, glucose and ribose were also detected.We have shown by polyacrylamide gel electrophoresis in sodium dodecylsulphate and by precipitation and agar gel diffusion experiments with concanavalin A that a mannan is the major carbohydrate component of both types of membrane. This polymer can be selectively released from mesosomal membranes by a simple procedure involving low ionic strength-shock and heating to 80°C for 1 min, and purified by ultrafiltration and ethanol precipitation.The mannan contains mannose as the only neutral carbohydrate, is not phosphorylated and does not contain significant amounts of amino sugars or uronic acids. Agar gel electrophoresis experiments, however, indicate an anionic polymer whose acidic properties are eliminated upon mild base hydrolysis. Analysis of native mannan by infrared spectroscopy reveals absorption bands attributable to ester carbonyl groups and to carboxylate ions, consistent with the presence of succinyl residues in the polymer (Owen, P. and Salton, M.R.J. (1975) Biochem. Biophys. Res. Commun. 63, 875–880).A sedimentation coefficient of 1.39 S was obtained by analytical ultracentrifugation in 1.0 M NaCl and a value of one reducing equivalent per 50 mannose residues by reduction with NaB3H4. The polysaccharide was only slightly degraded (2%) by jack bean α-mannosidase and could precipitate 15 times its own weight of concanavalin A.The acidic polymer was also detected in the cell “periplasm” and was secreted from cells grown in defined media during the period of decelerating growth.  相似文献   

11.
Using various chromatographic procedures, 4-aminobutyrate : 2-oxoglutarate transaminase from rat brain has been purified 2400 times with respect to the initial brain homogenate. The purified protein, which has a specific activity of 10 mumol times min -1, x mg-1 gave a single band by acrylamide gel electrophoresis and isoelectric focusing. It has a molecular weight of 105000 +/- 5000 and an isoelectric point of 6.8. In the presence of 0.1% sodium dodecylsulphate, a single protein band is seen on polyacrylamide gel, corresponding to a molecular weight of 57000 +/- 5000. N-terminal analysis reveals two chains with the same N-terminal amino acid, thus the enzyme may be considered as a dimer consisting of two identical subunits. The pH optimum for enzyme activity is 8.5. Studies of the enzymic reaction show that the general mechanism is of the ping-pong bi-bi model. The Km for 2-oxoglutarate at saturating 4-aminobutyrate extrapolated to saturating 2-oxoglutarate concentration is 4 mM. 2-Oxoglutarate competitively inhibits the enzyme with respect to 4-aminobutyrate, with a Ki of 1.8 times 10(-4) M. The same phenomenon is seen for the reverse reaction where the Ki is 6.6 times 10(-4) M for succinic semi-aldehyde.  相似文献   

12.
The diglyceride kinase activity of membranes from Escherichia coli was extracted into acidic butan-1-ol. The enzyme was purified in organic solvent by precipitation at -20 degrees C, chromatography on DEAE-cellulose and repeated chromatography on Sephadex LH-60. The final 1460-fold purified enzyme preparation gave a single protein band upon isoelectric focusing in the presence of Triton X-100 (pI, 4.0) and upon polyacrylamide-gel electrophoresis in the presence of sodium dodecylsulphate. The latter method as well as gel chromatography on Sephadex LH-60 indicated a molecular weight of about 15400. The purified enzyme was devoid of lipid, and it required re-addition of lipid for activity. sn-1,2-Dipalmitate and ceramide were phosphorylated, whereas the C55-isoprenoid alcohol, ficaprenol, did not serve as a substrate under the same conditions. Conversely, the butanol-soluble C55-isoprenoid-alcohol kinase from Staphylococcus aureus did not phosphorylate sn-1,2-dipalmitate.  相似文献   

13.
1.Yeast cells were labelled with radioactive amino acids in the presence of cycloheximide and the cytochrome bc1 complex was isolated from them as described in the preceding paper (Katan, M.B.., Pool, L. & Groot, G.S.P. (1976)Eur. J. Biochem, 65, 95-105). After analysis of this preparation by sodium dodecylsulphate polyacrylamide gel electrophoresis only one band, with an apparent Mr of 32000, was found to have incorporated radioactivity. The amount of label in the band was low, but could be increased approximately 5-fold by preincubating the cells in erythromycin before the labelling period. 2. Cells were labelled in the presence of chloramphenicol and the cytochrome bc1 complex was isolated by (NH4)2SO4 fractionation. Upon electrophoresis in the presence of sodium dodecylsulphate only four of the six bands that belong to the complex were found to have incorporated radioactivity; no radioactivity was found in the bands with an Mr of 40000 and 17000. The same result was obtained after labelling in the presence of acriflavin. If, however, the cytochrome bc1 complex was isolated by immunoprecipitation, all bands were found to have incorporated radioactivity in the presence of chloramphenicol. The amount of radioactivity in the Mr 32000 band was now clearly depressed. 3. It is concluded that of the seven polypeptides of the cytochrome bc1 complex of yeast only one is made on mitochondrial ribosomes. This polypeptide has an Mr of 32000 and is probably associated with cytochrome b.  相似文献   

14.
Solubilization of barley (Hordeum vulgare L.) thylakoid membranes with sodium dodecylsulphate plus sodium deoxycholate with or without Triton X-100 and subsequent fractionation in the polyacrylamide gel electrophoresis system described in this paper resulted: (1) in the resolution of the chlorophyll-proteins and chlorophyll-protein complexes commonly known as CP1a, CP1, LHCP1, LHCP2, CPa and LHCP3; (2) in the highly increased stability of CP1 and CP1a, as judged by their chlorophyll content, (3) at the expense of the free pigment concentration (4) which could be reduced to a negligible amount. Some 40% of the total chlorophyll contained in the mature higher plant thylakoid membrane is associated with CP1 and CP1 a and as already suggested before [19] no significant amount of free chlorophyll occurs in vivo.Abbreviations chl chlorophyll - CP1 P700-chla-protein - CPa P680-chla-protein - DOC sodium deoxychlolate - FC free chlorophyll - LHCP light-harvesting chlorophyll a/b-protein - PAGE(S) polyacrylamide gel electrophoresis (system) - SDS sodium dodecylsulphate - TX-100 Triton X-100  相似文献   

15.
LOCALIZATION OF ENZYMES WITHIN MICROBODIES   总被引:32,自引:1,他引:31       下载免费PDF全文
Microbodies from rat liver and a variety of plant tissues were osmotically shocked and subsequently centrifuged at 40,000 g for 30 min to yield supernatant and pellet fractions. From rat liver microbodies, all of the uricase activity but little glycolate oxidase or catalase activity were recovered in the pellet, which probably contained the crystalline cores as many other reports had shown. All the measured enzymes in spinach leaf microbodies were solubilized. With microbodies from potato tuber, further sucrose gradient centrifugation of the pellet yielded a fraction at density 1.28 g/cm3 which, presumably representing the crystalline cores, contained 7% of the total catalase activity but no uricase or glycolate oxidase activity. Using microbodies from castor bean endosperm (glyoxysomes), 50–60% of the malate dehydrogenase, fatty acyl CoA dehydrogenase, and crotonase and 90% of the malate synthetase and citrate synthetase were recovered in the pellet, which also contained 96% of the radioactivity when lecithin in the glyoxysomal membrane had been labeled by previous treatment of the tissue with [14C]choline. When the labeled pellet was centrifuged to equilibrium on a sucrose gradient, all the radioactivity, protein, and enzyme activities were recovered together at peak density 1.21–1.22 g/cm3, whereas the original glyoxysomes appeared at density 1.24 g/cm3. Electron microscopy showed that the fraction at 1.21–1.22 g/cm3 was comprised of intact glyoxysomal membranes. All of the membrane-bound enzymes were stripped off with 0.15 M KCl, leaving the "ghosts" still intact as revealed by electron microscopy and sucrose gradient centrifugation. It is concluded that the crystalline cores of plant microbodies contain no uricase and are not particularly enriched with catalase. Some of the enzymes in glyoxysomes are associated with the membranes and this probably has functional significance.  相似文献   

16.
The microbody transition observed in the cotyledons of somefatty seedlings involves the conversion of glyoxysomes to leafperoxisomes. To clarify the molecular mechanisms underlyingthe microbody transition, we established a method for the preparationof highly purified microbodies. SDS-PAGE and immunoblot analysisof isolated microbodies from pumpkin cotyledons at various stagesshowed that glyoxysomal enzymes are replaced by leaf-peroxisomalenzymes during the microbody transition. Two proteins in glyoxysomalmembranes, with molecular masses of 31 kDa and 28 kDa, werenot solubilized from the membranes with 0.2 M KCl, an indicationthat these proteins are bound tightly with glyoxysomal membranes.Their polyclonal antibodies were raised against the respectivepurified protein. Immunoblot analysis of subcellular fractionsand immunogold analysis confirmed that these proteins were specificallylocalized on glyoxysomal membranes. Analysis of these membraneproteins during development revealed that the amounts of thesemembrane proteins decreased during the microbody transitionand that the large one was retained in leaf peroxisomes, whereasthe small one could not be found in leaf peroxisomes after completionof the microbody transition. The results clearly showed thatmembrane proteins in glyoxysomes change dramatically duringthe microbody transition, as do the enzymes in the matrix. 1Present address: School of Agriculture, Nagoya University Chikusa,Nagoya, 464-01 Japan.  相似文献   

17.
Migrating cells degrade pericellular matrices and basement membranes. For these purposes cells produce a number of proteolytic enzymes. Mast cells produce two major proteinases, chymase and tryptase, whose physiological functions are poorly known. In the present study we have analyzed the ability of purified human mast cell tryptase to digest pericellular matrices of human fibroblasts. Isolated matrices of human fibroblasts and fibroblast conditioned medium were treated with tryptase, and alterations in the radiolabeled polypeptides were observed in autoradiograms of sodium dodecyl sulphate polyacrylamide gels. It was found that an M(r) 72,000 protein was digested to an M(r) 62,000 form by human mast cell tryptase while the plasminogen activator inhibitor, PAI-1, was not affected. Cleavage of the M(r) 72,000 protein could be partially inhibited by known inhibitors of tryptase but not by aprotinin, soybean trypsin inhibitor, or EDTA. Fibroblastic cells secreted the M(r) 72,000 protein into their medium and it bound to gelatin as shown by analysis of the medium by affinity chromatography over gelatin-Sepharose. The soluble form of the M(r) 72,000 protein was also susceptible to cleavage by tryptase. Analysis using gelatin containing polyacrylamide gels showed that both the intact M(r) 72,000 and the M(r) 62,000 degraded form of the protein possess gelatinolytic activity after activation by sodium dodecyl sulphate. Immunoblotting analysis of the matrices revealed the cleavage of an immunoreactive protein of M(r) 72,000 indicating that the protein is related to type IV collagenase. Further analysis of the pericellular matrices indicated that the protease sensitive extracellular matrix protein fibronectin was removed from the matrix by tryptase in a dose-dependent manner. Fibronectin was also susceptible to proteolytic degradation by tryptase. The data suggest a role for mast cell tryptase in the degradation of pericellular matrices.  相似文献   

18.
The outer membrane of avirulent and virulentAgrobacterium tumefaciens have been studied both biochemically and immunologically. Electron microscopy revealed large hollow spheres bound by a single unit membrane similar to those reported for other Gram-negative organisms. The membranes were mainly composed of proteins, phospholipids and lipopolysaccharides. No quantitative changes were observed between the virulent and the avirulent outer membrane preparations either by chemical estimation or by sodium dodecylsulphate polyacrylamide gel electrophoresis. However, immunological studies revealed that one protein band (the slow-moving band in agar) was antigenically distinct and did not cross-react between the two strains. The possible role of this protein in the primary interaction between the pathogen and the host prior to tumor initiation is discussed.  相似文献   

19.
Light density membranes derived from the "microsomal" fraction of rat skeletal muscle contained an endogenous protein kinase which catalyzed the phosphorylation of an endogenous membrane substrate. No other membrane fraction contained any significant protein kinase activity. The optimal specific activity of the enzyme in these membranes was 350 pmol/mg/min. The endogenous muscle membrane protein kinase required magnesium, was stimulated by micromolar concentrations of calcium, had a pH optimum between 7.0 and 7.5, and demonstrated a K-m for ATP of 2.6 times 10 minus 5 M. The enzyme was markedly heat labile and demonstrated a linear Arrhenius plot with an apparent energy of activation of 12,100 cal/mol. There was no stimulation by cyclic nucleotides; and neither monovalent cations nor various neurotransmitters exerted any effect. It is presently unclear where the membranes exhibiting protein phosphorylation are localized within the muscle fiber. Enzyme markers suggest that these membranes are not derived from sarcolemma or sarcoplasmic reticulum but may originate in transverse tubules. The membrane phosphorylation was largely confined to a polypeptide with an apparent molecular weight of 28,000. Phosphorylation could also be detected in a lower molecular weight substrate as well as two polypeptides with apparent molecular weights of 95,000 and 56,000. The M-r-28,000 endogenous protein kinase substrate was isolated by preparative gel electrophoresis in sodium dodecyl sulfate. High voltage electrophoresis of a partial acid hydrolysate of the phosphorylated M-r-28,000 substrate identified the phosphate bond to be that of phosphoserine. The amino acid composition of the substrate was neither strongly acidic nor basic. It had a high content of glycine, glutamic acid, serine, and lysine. Hydrophobic residues constituted only 45% of the total composition. Following muscle denervation for 10 days, there was a significant decrease in the amount of the M-r-28,000 polypeptide as well as the extent of phosphorylation.  相似文献   

20.
A Schmid  R Benz    B Schink 《Journal of bacteriology》1991,173(16):4909-4913
Porins were purified from cells of the anaerobic gram-negative bacterium Pelobacter venetianus grown with 20-kDa polyethylene glycol. After treatment of the cell envelope fraction with sodium dodecyl sulfate-containing solutions, the murein contained only two major peptidoglycan-associated proteins of 14 and 23 kDa. Both proteins were released from the peptidoglycan by the detergent Triton X-100. Genapol X-80 released only the 23-kDa protein. This protein was purified by chromatography on a hydroxyapatite column. It did not form sodium dodecyl sulfate-resistant oligomers. Reconstituted in lipid bilayer membranes, the 23-kDa protein formed cation-selective channels with a single-channel conductance of 230 pS in 1 M KCl. The channel is not a general-diffusion pore, since its conductance depends only moderately on the salt concentration. The channel conducted ammonium much better than potassium or rubidium ions, suggesting that it is probably involved in ammonium uptake. The outer membrane of P. venetianus contains a further, non-murein-associated pore with an unknown molecular mass. It is also cationically selective and has a single-channel conductance of 1.6 nS in 1 M KCl, which suggests that its effective diameter is similar to that of porins from enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号