首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lingakumar  K.  Kulandaivelu  G. 《Photosynthetica》1999,36(1-2):61-67
In field-grown Cyamopsis seedlings, distinct changes were found in the rates of photosystems (PS) 2 and 1 activities at different time of the day. Maximum PS2 activity was at around 11:00 h and decreased thereafter. On the contrary, PS1 activity continued to increase up to 14:00 h and declined in evening hours. Significant energy transfer from PS2 to PS1 was evident during the morning and evening hours of the day whereas a slow excitation of PS2 and energy transfer was favoured during noon hours. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
Senescence induced loss in pigments and proteins of detached maize (Zea mays L. cv. Col) leaves was significantly enhanced on the exposure of leaves to different ranges of ultraviolet (UV) radiation. Compared to UV-A (320-400 nm) and UV-B (280-320 nm), the UV-C (200-320 nm) was the most damaging for the pigments and macromolecules. A severe decline in photosystem (PS) 2 mediated photoreduction during senescence of detached leaves exposed to UV irradiation suggested a damage of the system. The PS1 mediated photoreduction of methylviologen with 2,6-dichlorophenol indophenol as electron donor was stimulated by UV-A and UV-B radiations, suggesting a reorganisation of the PS1 complex. These results were fortified by the values of fast and slow kinetics of chlorophyll (Chl) a fluorescence transients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Ritz  M.  Neverov  K.V.  Etienne  A.-L. 《Photosynthetica》1999,37(2):267-280
Plants have developed various photoprotective mechanisms to resist irradiation stress. One of the photoprotective mechanisms described in the literature for LHC2-containing organisms involves a down-regulation of photosystem (PS) 2 occurring simultaneously with the build-up of a proton gradient across the thylakoid membrane (ΔpH). It is often correlated with deepoxidation of xanthophylls located in LHC2. In Rhodophyta instead of LHC2, the peripheral antenna of PS2 consists of a large extramembrane complex, the phycobilisome (PBS), which transfers its excitation to the core antennae of PS2 composed of the CP43 and CP47 protein-chlorophyll complexes and there is no xanthophyll cycle. In the red alga Rhodella violacea a ΔpH-dependent chlorophyll (Chl) a fluorescence quenching can be formed. We characterised this quenching, studied the effects of various irradiances and inhibitors. Under photoinhibitory conditions, the ΔpH-dependent Chl fluorescence quenching exerts a photoprotective role and delays the kinetics of photoinhibition. It is the first time that such a photoprotective mechanism is described in PBS-containing organisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Lingakumar  K.  Kulandaivelu  G. 《Photosynthetica》1998,35(3):335-343
Cyamopsis tetragonoloba L. seedlings were subjected to continuous ultraviolet (UV)-B radiation for 18 h and post-irradiated with "white light" (WL) and UV-A enhanced fluorescent radiations. UV-B treatment alone reduced plant growth, pigment content, and photosynthetic activities. Supplementation of UV-A promoted the overall seedling growth and enhanced the synthesis of chlorophyll and carotenoids with a relatively high photosystem 1 activity. Post UV-B irradiation under WL failed to photoreactive the UV-B damage whereas a positive photoregulatory effect of UV-A was noticed in electron transport rates and low temperature fluorescence emission spectra.  相似文献   

5.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2003,41(4):611-617
Photoinhibition of photosynthesis was investigated in grapevine (Vitis vinifera L.) exposed to 2 or 4h of high irradiance (HI) (1 700–1 800 mol m–2 s–1) leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined, F0 increased in both 2 (HI2) and 4 h (HI4) HI leaves sampled at midday. When various photosynthetic activities were followed on isolated thylakoids, HI4 leaves showed significantly higher inhibition of whole chain and PS2 activity than the HI2 leaves sampled at midday. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both variants of leaves, while DPC and NH2OH significantly restored PS2 activity in HI4 midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between HI2 and HI4 leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in HI2, while in HI4 it was mainly 33-kDa protein.  相似文献   

6.
The ability of developing chloroplasts to dynamically regulate the distribution of excitation energy between photosystem 1 and photosystem 2, and thus perform a State 1 – State 2 transition, was examined from analyses of chlorophyll fluorescence kinetics in 4- and 8-day-old Triticum aestivum L. cv. Maris Dove leaves grown under a diurnal light regime. Chloroplasts at all stages of development in the two leaf systems could undergo a State 1 – State 2 transition, except those found in the basal 0.5 cm of the 4-day-old leaf. The ability to physiologically modify the excitation energy distribution between the chlorophyll matrices of the two photosystems developed after the development of mature, fully photochemically competent photosystem 2 units and the appearance of excitation energy transfer between photosystem 2 and photosystem 1. Also, changes in the degree of energetic interaction between the two photosystems, in vivo rates of electron transport and the chlorophyll a/b ratio could not be correlated with the appearance of a State 1 – State 2 transition. Ultrastructural studies demonstrated a 32% increase in the degree of thylakoid appression in chloroplasts at the base of the 8-day-old leaf compared to the situation in the basal 0.5 cm of the 4-day-old leaf. This difference in thylakoid stacking can account for the differing abilities of these two tissues to perform a State 1 – State 2 transition when considered in the context of the distribution of the two photosystems within appressed and non-appressed regions of thylakoid membranes.  相似文献   

7.
Zhu  X.Y.  Wang  S.M.  Zhang  C.L. 《Photosynthetica》2003,41(1):97-104
As compared with the swamp reed (SR) ecotype of Phragmites communis growing in the desert region of northwest China, plants of the dune reed (DR) ecotype from the same region possessed lower chlorophyll (Chl) content in leaves, and less thylakoids and grana stacks in chloroplasts. Tube gel electrophoresis without stain showed that the contents of Chl-protein (Pro) components related to photosystem 2 (PS2) were markedly lower in the DR thylakoid membranes than in the SR thylakoid membranes, while the contents of Chl-Pro components associated with PS1 were almost the same in both types. SDS-PAGE analysis indicated that the content of polypeptides of the light-harvesting Chl a/b complex of PS2 (LHC2) was lower in the DR thylakoids. Besides, the conformation of LHC2 within the DR thylakoid membranes was also altered as indicated by circular dichroism spectra. Hence in the DR, reduced energy harvesting by declining the size of LHC2 might be responsible for the down-regulated PS2 activity. Chl fluorescence parameters. Fv/Fm and quantum efficiency of PS2 (PS2), were lower in the DR leaves than in the SR ones. However, non-photochemical quenching coefficient (qN) was greater in DR than that in SR, implying other energy dissipation way exists in the DR photosynthetic membranes.  相似文献   

8.
Wang  Zeneng  Xu  Yinong  Yang  Zhenle  Hou  Haitong  Jiang  Guizhen  Kuang  Tingyun 《Photosynthetica》2002,40(3):383-387
Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose.  相似文献   

9.
Adaptation to shade of the light-harvesting apparatus in Silene dioica   总被引:2,自引:1,他引:1  
Abstract. The physiological characteristics and photo-system composition of the photosynthetic apparatus of Silene dioica , a woodland plant, grown in sun and natural shade are examined. As expected, shade leaves exhibited lower chlorophyll a/b ratios, light saturated rates of CO2 assimilation (Asat), dark respiration (Rd,) and light compensation points ( Г ), with both sun and shade leaves having similar absorptances and quantum yields of CO2 assimilation (φ). Shade leaves were able to utilize far-red light for electron transport and carbon assimilation and reach the compensation point. Sun leaves in far-red light had a rate of carbon assimilation equivalent to their dark respiration rate. Chlorophyll fluorescence kinetics from leaves at 77 K together with analyses of thylakoid contents of photosystems (PS) I and II and the light-harvesting cholorphyll a/b protein complex associated with PSII (LHCII) demonstrated that the antenna size of PSII was similar in thylakoids of sun and shade leaves, but shade leaves contained ca. 20% more PSII and ca. 12% less PSI complexes. The increased PSII/PSI ratio in shade leaves accounted for their ability to achieve the compensation point in far-red light. An important feature of photosynethic shade adaptation in S. dioica is an increase in the PSII/PSI ratio and not an increase in the antenna size of PSII. The adaptive response of sun leaves when placed in a shade environment was rapid and had a half-time of ca. 18h.  相似文献   

10.
Spectral and photochemical properties were analyzed on intact chloroplasts and pigment-protein complexes isolated with gel electrophoresis from pea (Pisum sativum L.) leaves of parental variety Torsdag and of chlorophyll-deficient mutants chlorotica 2004 and 2014. Measurements of chlorophyll absorption and fluorescence spectra and of second derivative low-temperature (–196°C) spectra clarified exact positions of fluorescence maxima and revealed the chlorophyll forms of individual complexes in samples investigated. The chlorotica 2004 mutant, whose hybrids yield the heterosis effect, was characterized by the decreased accumulation of chlorophyll forms absorbing at 690, 697, and 708 nm, known to constitute the core antenna in the vicinity of photosystem I (PSI) reaction center. In the chlorotica 2014 mutant, whose hybrids are low productive, the interaction between PSI and PSII complexes was weakened, but no other difference from the parental variety was observed. The analysis of PSI and PSII photochemical activities, as well as estimates of light-harvesting antenna size and the number of reaction centers revealed that the chlorotica 2004 mutant is deficient in the number of PSI reaction centers by a factor of 1.7. This deficiency resulted from the mutation-induced disorder in biosynthesis of chlorophyll a-protein complex of PSI. It appears that gene interactions between the 2004 mutant and the parental variety Torsdag enhance the functional and metabolic activity of leaves in their hybrids, thereby yielding the heterosis effect.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 172–183.Original Russian Text Copyright © 2005 by Ladygin, Vaishlya.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

11.
Soybean (Glycine max Merrill) and maize (Zea mays L.) plants were exposed for 5 to 48 h to the herbicide diquat under "white light" (WL) or far-red radiation (FR) (photon fluence rate of 30 μmol m-2 s-1). The WL enhanced diquat effect on chlorophyll content in soybean plants, while FR had the same effects on maize plants. After 5 h, diquat increased the content of polypeptides bound to light-harvesting proteins in both plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The degree of photoinhibition of sun and shade grown leaves of grapevine was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined under high irradiance (HI) in shade leaves with less than 10 % of F0 level. In contrast, Fv/Fm ratio declined with about 20 % increase of F0 level in sun leaves. In isolated thylakoids, the rate of whole chain and PS2 activity in HI shade and sun leaves was decreased by about 60 and 40 %, respectively. A smaller inhibition of photosystem 1 (PS1) activity was also observed in both leaf types. In the subsequent dark incubation, fast recovery was observed in both leaf types that reached maximum PS2 efficiencies similar to non-photoinhibited control leaves. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in sun leaves, while DPC and NH2OH were significantly restored in shade leaves. Hence HI in shade leaves inactivates on the donor side of PS2 whereas it does at the acceptor side in sun leaves, respectively. Quantification of the PS2 reaction centre protein D1 and the 33 kDa protein of water splitting complex following HI-treatment of leaves showed pronounced differences between shade and sun leaves. The marked loss of PS2 activity in HI leaves was due to the marked loss of D1 protein of the PS2 reaction centre protein and the 33 kDa protein of the water splitting complex in sun and shade leaves, respectively.  相似文献   

13.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(4):529-537
In canopy shade leaves of grapevine (Vitis vinifera L. cv. Moscato giallo) grown in the field the contents of chlorophyll (Chl), carotenoids (Car), and soluble protein per fresh mass were lower than in sun leaves. RuBPC activity, in vivo nitrate reductase activity (indicator of nitrate utilisation), apparent electron transport rate, and photochemical fluorescence quenching were also significantly reduced in canopy shade leaves. When various photosynthetic activities were followed in isolated thylakoids, canopy shade leaves exerted a marked inhibition of whole chain and photosystem (PS) 2 activity. Smaller inhibition of PS1 activity was observed even in high-level canopy shade (HS) leaves. The artificial exogenous electron donors, DPC and NH2OH, significantly restored the loss of PS2 activity in HS leaves. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PS2 activity in canopy shade leaves was due to the loss of 47, 43, 33, 28–25, 23, 17, and 10 kDa polypeptides.  相似文献   

14.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Zhang  Jing-Liu 《Photosynthetica》2003,41(4):589-595
Two new yellow rice chlorophyll (Chl) b-less (lack) mutants VG28-1 and VG30-5 differ from the other known Chl b-less mutants with larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small sub-unit and smaller amounts of Chl a. We investigated the altered features of Chl-protein complexes and excitation energy distribution in these two mutants, as compared with wild type (WT) rice cv. Zhonghua 11 by using native mild green gel electrophoresis and SDS-PAGE, and 77 K Chl fluorescence in the presence of Mg2+. WT rice revealed five pigment-protein bands and fourteen polypeptides in thylakoid membranes. Two Chl b-less mutants showed only CPI and CPa pigment bands, and contained no 25 and 26 kDa polypeptides, reduced amounts of the 21 kDa polypeptide, but increased quantities of 32, 33, 56, 66, and 19 kDa polypeptides. The enhanced absorption of CPI and CPa and the higher Chl fluorescence emission ratio of F685/F720 were also observed in these mutants. This suggested that the reduction or loss of the antenna LHC1 and LHC2 was compensated by an increment in core component and the capacity to harvest photon energy of photosystem (PS) 1 and PS2, as well as in the fraction of excitation energy distributed to PS2 in the two mutants. 77 K Chl fluorescence spectra of thylakoid membranes showed that the PS1 fluorescence emission was shifted from 730 nm in WT rice to 720 nm in the mutants. The regulation of Mg2+ to excitation energy distribution between the two photosystems was complicated. 10 mM Mg2+ did not affect noticeably the F685/F730 emission ratio of WT thylakoid membranes, but increased the ratio of F685/F720 in the two mutants due to a reduced emission at 685 nm as compared to that at 720 nm.  相似文献   

15.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

16.
The recessive lethal character Luteus-Pa, expressed as a yellowing of leaves of young seedlings and followed by death approximately 60 d after emergence, presents a 3:1 segregation in crosses and/or selfpollinated plants. We evaluated quantitatively the fluorescence emission of chlorophyll (Chl), gas exchange, and chemical composition of normal and recessive homozygous cacao seedlings of the cross Pa 121×Pa 169. The characteristics of Chl fluorescence kinetics were studied in stages B2, B3, C, D, and E of leaf development, corresponding to plant ages of 9 to 12, 13 to 15, 16 to 20, 21 to 30, and >30 d, respectively. Gas exchanges were measured in mature leaves of both seedlings. In regular intervals of 3 d beginning at 33 d after emergence, the seedlings were separated into roots, stems, leaves, and cotyledons to determine the contents of saccharides (SAC) and free amino acids (FAA) and variation of the leaf Chl content. The Chl distribution in complexes of the photosynthetic apparatus was analysed by SDS-PAGE in mature leaves of both normal and recessive 32-d-old seedlings. There were variations in Chl fluorescence, gas exchanges and chemical composition of different parts of both types of seedlings. However, no significant differences were found in the Chl distribution through photosynthetic complexes of 32-d-old normal and recessive homozygous seedlings. After that period a decrease in the Chl concentration was observed in the recessive seedlings, and only minimum fluorescence (F0) was found. The F0 values were higher in the recessive seedlings than in the normal ones. The net photosynthetic rate of mature leaves was negative in agreement with low conductance, transpiration rate, and high internal CO2 concentration. These factors might have contributed to a depletion in SAC in different plant parts. Although F0 partially reflects the Chl concentration in leaf tissue, the increase in its value was probably due to a damage in reaction centres of photosystem 2. Therefore, the growth and development of recessive homozygous seedlings depended exclusively on cotyledon reserves, the depletion of which leads to death.  相似文献   

17.
Vácha  F.  Vácha  M.  Bumba  L.  Hashizume  K.  Tani  T. 《Photosynthetica》2000,38(4):493-496
Inner structure of isolated intact chloroplasts was observed for the first time by a method of laser scanning microscopy at the temperature of liquid nitrogen at 77 K. The microscope, based on gradient index optics, has a maximum resolution of 440 nm at the wavelength of 650 nm. Chloroplasts were excited into the Q-band of chlorophyll b by a krypton laser line at 647.6 nm and fluorescence was detected using two different interference filters. The 680 nm interference filter detects the regions where photosystem (PS) 2 mainly occurs, the 730 nm interference filter detects domains with predominant location of PS1. Since PS1 occurs mainly in stroma lamellae, whereas PS2 occurs mainly in grana regions we were able to view the structure of thylakoid membrane in isolated intact chloroplast that is the closest to in vivo state.  相似文献   

18.
Prakash  J.S.S.  Baig  M.A.  Mohanty  Prasanna 《Photosynthetica》1998,35(3):345-352
Cotyledonary leaves of Cucumis sativus cv. Poinsette exhibited senescence-induced losses in chlorophyll (Chl) and protein contents within three weeks since germination. Chl and protein concentrations in cotyledonary leaves approached maximum on 6th d after germination and they declined to 50 and 41 %, respectively, by the 20th day of growth. Activities of both photosystem (PS) 2 and PS1 decreased by 33 and 31 %, respectively, on the 20th day, compared to the control 6th day. Changes in sensitivity of PS2 to inhibitors like atrazine and dibromothymoquinone and sensitivity of PS1 to KCN accompanied the changes in PS2 and PS1 activities. Hence both the acceptor side of PS2 and the donor side of PS1 are affected by senescence-induced changes in cucumber cotyledonary leaves.  相似文献   

19.
Changes in pigment composition during light-dependent chloroplast differentiation in mutant C-6D of Scenedesmus obliquus were followed by HPLC. The system used enables the separation and quantitative determination of five xanthophylls (neoxanthin, violaxanthin, antheraxanthin, lutein and zeaxanthin), α- and β-carotene and chlorophyll a and b (and their epimeric forms). Dark-grown cells of the mutant contain only chlorophyll a, traces of chlorophyll b and acyclic precursors of carotenoids. During subsequent illumination, precursors decrease and high amounts of xanthophylls, carotenes and chlorophyll a and b are formed. Dark-grown cultures of mutant C-6D show high photosystem I-activity and contain the photosystem I-complex CP I, but lack photosystem II-activity, the photosystem II-complex CPa and the LHCP. Immediately after transfer to light, photosystem II-activity increases rapidly, as also do the amounts of CPa and lutein. Under anaerobiosis no lutein and PS II-activity can be detected. This indicates a role of lutein in the assembly of an active photosystem II-complex. All other xanthophylls and the LHCP exhibit high rates of synthesis only after a delay of about 1 hour. Thus, our results reveal an asynchronous fashion of formation of CPa and LHCP.  相似文献   

20.
Mechanisms of energy dissipation in peanut under water stress   总被引:1,自引:0,他引:1  
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57–422, 73–30, and GC 8–35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57–422 and GC 8–35, while in the cv. 73–30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57–422 and 73–30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号