共查询到20条相似文献,搜索用时 15 毫秒
1.
Griesser M 《Current biology : CB》2008,18(1):69-73
Predation is a powerful agent of natural selection, driving the evolution of antipredator calls [1]. These calls have been shown to communicate predator category [2-4] and/or predator distance to conspecifics [5-7]. However, the risk posed by predators depends also on predator behavior [8], and the ability of prey to communicate predator behavior to conspecifics would be a selective advantage reducing their predation risk. I tested this idea in Siberian jays (Perisoreus infaustus), a group-living bird species. Predation by hawks, and to a lesser extent by owls, is substantial and the sole cause of mortality in adult jays [9]. By using field data and predator-exposure experiments, I show here that jays used antipredator calls for hawks depending on predator behavior. A playback experiment demonstrated that these prey-to-prey calls were specific to hawk behavior (perch, prey search, attack) and elicited distinct, situation-specific escape responses. This is the first study to demonstrate that prey signals convey information about predator behavior to conspecifics. Given that antipredator calls in jays aim at protecting kin group members [10, 11], consequently lowering their mortality [9], kin-selected benefits could be an important factor for the evolution of predator-behavior-specific antipredator calls in such systems. 相似文献
2.
Quantifying insect predation with predator exclusion cages: the role of prey antipredator behavior as a source of bias 下载免费PDF全文
Ignacio Castellanos Pedro Barbosa Iriana Zuria Astrid Caldas 《Entomologia Experimentalis et Applicata》2015,157(3):360-364
There are limitations imposed by current methodologies to detect and quantify insect predation. However, there has been relatively little effort to experimentally document the sources of biases associated with the various methodologies. In this study, we examined how predation estimates in the field using predator exclusion cages may be biased when one fails to account for antipredator behavioral responses. To do this, we did the usual comparison of the number of insects missing from plants where predators were allowed access to the number missing from plants where predators were excluded, but also determined how many of the missing insects reacted to predators by dropping from plants and how many were actually preyed upon. Our results provide evidence that estimates of insect mortality in the field are significantly reduced if prey antipredator behavior is taken into account. As it is commonly assumed that prey missing in the field are predated, documenting the incidence of predator‐mediated ‘disappearance’ and capturing insect prey before they escape can provide with a relevant estimate of bias. 相似文献
3.
Resource levels and prey state influence antipredator behavior and the strength of nonconsumptive predator effects 下载免费PDF全文
Catherine M. Matassa Sarah C. Donelan Barney Luttbeg Geoffrey C. Trussell 《Oikos》2016,125(10):1478-1488
The risk of predation can drive trophic cascades by causing prey to engage in antipredator behavior (e.g. reduced feeding), but these behaviors can be energetically costly for prey. The effects of predation risk on prey (nonconsumptive effects, NCEs) and emergent indirect effects on basal resources should therefore depend on the ecological context (e.g. resource abundance, prey state) in which prey manage growth/predation risk tradeoffs. Despite an abundance of behavioral research and theory examining state‐dependent responses to risk, there is a lack of empirical data on state‐dependent NCEs and their impact on community‐level processes. We used a rocky intertidal food chain to test model predictions for how resources levels and prey state (age/size) shape the magnitude of NCEs. Risk cues from predatory crabs Carcinus maenas caused juvenile and sub‐adult snails Nucella lapillus to increase their use of refuge habitats and decrease their growth and per capita foraging rates on barnacles Semibalanus balanoides. Increasing resource levels (high barnacle density) and prey state (sub‐adults) enhanced the strength of NCEs. Our results support predictions that NCEs will be stronger in resource‐rich systems that enhance prey state and suggest that the demographic composition of prey populations will influence the role of NCEs in trophic cascades. Contrary to theory, however, we found that resources and prey state had little to no effect on snails in the presence of predation risk. Rather, increases in NCE strength arose because of the strong positive effects of resources and prey state on prey foraging rates in the absence of risk. Hence, a common approach to estimating NCE strength – integrating measurements of prey traits with and without predation risk into a single metric – may mask the underlying mechanisms driving variation in the strength and relative importance of NCEs in ecological communities. 相似文献
4.
5.
When predation risk varies in space and time and with predator species, successful prey defence requires specific responses to each predator. In cassava fields in Africa, the herbivorous cassava green mite (Mononychellus tanajoa) is attacked by three predatory mite species that are segregated within the plant: the leaf-dwelling Typhlodromalus manihoti and Euseius fustis occur on the middle leaves, whereas the apex-inhabiting T. aripo migrates from the apex to the top leaves only during the night. We found that differential distributions of these predators allow prey to escape predation by vertical migration to other plant strata. We studied the role of odours in the underlying prey behaviour on predator-free plants placed downwind from plants with predators and prey or with prey only. Prey showed increased vertical migration in response to predator-related odours. Moreover, these responses were specific: when exposed to odours associated with T. manihoti, prey migrated upwards, irrespective of the plant stratum where they were placed. Odours associated with T. aripo triggered a flexible response: prey on the top leaves migrated downwards, whereas prey on the middle leaves migrated upwards. Odours associated with E. fustis, a low-risk predator, did not elicit vertical migration. Further experiments revealed that: (1) prey migrate up or down depending on the stratum where they are located, and (2) prey discrimination among predators is based upon the perception of predator species-specific body odours. Thus, at the scale of a single plant, odour-based enemy specification allows herbivorous mites to escape predation by vertical migration. 相似文献
6.
7.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics. 相似文献
8.
J. Van Buskirk 《Journal of evolutionary biology》2001,14(3):482-489
Models of defence against multiple enemies predict that specialized responses to each enemy should evolve only under restrictive conditions. Nevertheless, tadpoles of Rana temporaria can differentiate among several predator species. Small tadpoles used a refuge when Notonecta backswimmers were in the pond, but showed a weaker hiding response to adult Triturus alpestris newts and no response to aeshnid dragonfly larvae (Aeshna and Anax). All predators caused a decline in feeding and swimming activity. Large tadpoles reserved the strongest behavioural response for dragonflies, while Triturus caused no response. The shift during development suggests that tadpoles distinguished among predators, rather than exhibiting a graded dosage response to a single cue associated with predation. Information on habitat distributions of predators suggests that they are regularly encountered, which would facilitate evolution of adaptive behavioural responses. Morphological responses to all predators were similar, perhaps because similar morphologies defend against all four predators. The evolutionary maintenance of specialized responses to multiple predators may be possible because adaptive responses do not conflict and the predators themselves do not interact strongly. 相似文献
9.
10.
Differential predation by the generalist predator Orius insidiosus on congeneric species of thrips that vary in size and behavior 总被引:1,自引:0,他引:1
Stuart R. Reitz Joe E. Funderburk & Scot M. Waring 《Entomologia Experimentalis et Applicata》2006,119(3):179-188
We investigated interactions between the generalist predator Orius insidiosus (Say) (Heteroptera: Anthocoridae) and two species of thrips prey, Frankliniella bispinosa (Morgan) and Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and interspecific differences in morphology and behavior between these prey species that could contribute to differences in predation by O. insidiosus. Frankliniella occidentalis is significantly larger than F. bispinosa. Frankliniella bispinosa has greater mobility compared with F. occidentalis. When O. insidiosus was offered either F. bispinosa or F. occidentalis as prey in single species trials, there were no significant differences in the number of prey captured. However, O. insidiosus had significantly more encounters with F. bispinosa than with F. occidentalis. In arenas with equal numbers of both species, O. insidiosus encountered and captured F. occidentalis more than F. bispinosa. In large arenas with two pepper plants (Capsicum annuum L.), O. insidiosus preyed on more F. occidentalis than on F. bispinosa. These results indicate that O. insidiosus can prey on both thrips species, but that it preferentially captures F. occidentalis. The greater locomotion and movement of F. bispinosa, perhaps combined with its smaller size, allow it to evade predation by O. insidiosus better than F. occidentalis. Consequently, the observed preference of O. insidiosus for F. occidentalis is not exclusively a function of active selection by the predator but also could arise from inherent differences among prey. We propose this differential predation as a mechanism contributing to observed differences in the temporal dynamics of these species in pepper fields. 相似文献
11.
Abstract— Myelin was isolated from bovine optic nerve, cerebral white matter, spinal cord white matter and peripheral nerve (intradural spinal roots). The freeze-dried myelin completely dissolved in phenol-formic acid-water (14:3:3, w/v/v), and acrylamide gel electrophoresis of the myelin proteins was performed with this solvent. Qualitative and quantitative differences were observed in the myelin proteins from the various regions of the CNS. Myelin of peripheral nerve contained proteins that are apparently unique to it and which are not found in the myelin of the CNS. 相似文献
12.
13.
Aggregative responses by the predatory mites, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to spatial variation in the density of mobile stages of Tetranychus urticae (Acari: Tetranychidae) were studied over different spatial scales on greenhouse roses. Significant spatial variations in prey numbers per leaflet, per leaf, per branch or per plant were present in all experimental plots. None of the predator species responded to prey numbers per plant, and all searched randomly among plants. Within a plant, the oligophagous P. persimilis searched randomly among branches, but aggregated strongly among leaves within a branch and among leaflets within a leaf. The narrowly polyphagous T. occidentalis searched randomly among leaflets within a leaf and amond leaves within a branch, but aggregated strongly among leaflets or leaves within a plant. The boradly polyphagous A. andersoni searched randomly among leaflets within a leaf, a branch or a plant, and among leaves within a branch or a plant, but distributed themselves more often on branches with lower prey densities. Thus, specialist predators aggregate strongly at lower spatial levels but show random search at higher spatial levels, whereas generalist predators show random search at lower spatial levels but aggregate at higher spatial levels. This is the first empirical evidence demonstrating the relation between the degree of polyphagy and the spatial scale of aggregation. It is also concluded that both the prey patch size (i.e. grain) and predator foraging range (i.e. extent) are important for analyzing spatial scales of predator aggregation. The importance of studying spatial scale of aggregation is also discussed in relation to predator-prey metapopulation dynamics. 相似文献
14.
蜻蜓是一类营养丰富且具有药用保健价值的可食用昆虫。目前蜻蜓在国内被食用的种类见诸报道的有红蜻(Crocothemis servilia)、角突箭蜓(Gomphus cuneatus)、舟尾丝蟌(Lestes praemorsa)、闪蓝丽大蜻(Epophthalmia elegans)、碧伟蜓(Anax parthenope julius)、小团扇春蜓(Ictinogomphus rapax)、大团扇春蜓(Sinictinogomphus clavatus)、黄蜻(Pantala flavescens)、赤褐灰蜻(Orthetrum pruinosum)、白尾灰蜻(Orthetrum albistylum)、异色灰蜻(Orthetrum triangulare melania)、大黄赤蜻(Sympetrum uniforme)共12种。笔者在来自云南红河州元阳县大坪乡的待食用蜻蜓稚虫中发现一种体型较小的蜻蜓种类,从形态上初步判断不属于以上12种,通过DNA条形码分子鉴定法对这种蜻蜓进行了种类鉴定,结果该种蜻蜓为黄基赤蜻(Sympetrum speciosum),由此食用蜻蜓报道的种类又增加了一种。 相似文献
15.
Andrew Sih Daniel I. Bolnick Barney Luttbeg John L. Orrock Scott D. Peacor Lauren M. Pintor Evan Preisser Jennifer S. Rehage James R. Vonesh 《Oikos》2010,119(4):610-621
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control. 相似文献
16.
Oecologia - Trade-offs between juvenile survival and the development of sexually selected traits can cause ontogenetic conflict between life stages that constrains adaptive evolution. However, the... 相似文献
17.
《Current biology : CB》2022,32(24):5398-5405.e3
18.
Journal of Insect Conservation - The two sibling and syntopic odonate species Sympetrum striolatum and Sympetrum vulgatum are common and widespread in Central Europe. While S. striolatum has strong... 相似文献
19.
Predation imposes selection on the ability of prey to recognize and respond to potential threats. Many prey species detect predators via chemoreception, particularly in aquatic environments. Also, chemical cues from injured prey are often perceived as an indication of predation risk. However, because antipredatory behavior can be costly, prey responses should depend on the current level of risk that each predator poses, which may depend on the type of chemical cues detected. We exposed larval newts, Triturus pygmaeus, to chemical cues from predator larval beetles or to alarm cues from conspecific larval newts and examined the behavioral changes of larval newts. Results showed that larval newts reduced activity levels when conspecific alarm cues were present but not when the predator cues alone were present. These results might suggest that larval newts are unable to recognize predator chemicals. To avoid costs of unnecessary antipredatory behaviors, larval newts may benefit by avoiding only predators that represent a current high level of threat, showing only antipredatory responses when they detect conspecific alarm cues indicating that an actual predatory attack has occurred. 相似文献
20.
SHIN‐YA OHBA MASAKAZU OHTSUKA TOSHIHIKO SUNAHARA YURI SONODA EMIKO KAWASHIMA MASAHIRO TAKAGI 《Ecological Entomology》2012,37(5):410-418
1. Natural selection favours females who can correctly assess the predation risk and hence avoid high‐risk oviposition sites and reduce the mortality rate of their offspring. In spite of the potential significance of such behaviour, relatively few studies have assessed the relationship between oviposition behaviour and predation risk. 2. The present study aimed to determine the sublethal effects of predators on oviposition site selection by gravid females, the foraging activity of larvae, and the life history traits of two mosquito species that breed in different habitats, Aedes albopictus Skuse (container breeder) and Culex tritaeniorhynchus Giles (wetland breeder). 3. Female C. tritaeniorhynchus avoided laying eggs at oviposition sites in the presence of a predator cue. In contrast, female A. albopictus laid eggs in both the absence and presence of the predator cue. 4. To examine the effects of predator cues on larval behaviour, experiments were conducted in the absence and presence of a predator cue. Although larval activity was lower in the presence of the predator cue than that in its absence in both species, C. tritaeniorhynchus responded to the predator cue more strongly than A. albopictus. Female A. albopictus that had been reared with caged predators exhibited an extended larval development period, whereas the adult C. tritaeniorhynchus reared in the presence of predators were smaller than those reared in their absence. 5. This finding might explain why C. tritaeniorhynchus avoid laying eggs in predator‐conditioned water, for example to increase the fitness of their offspring, but A. albopictus either cannot detect predator cues or are not sensitive to them. 相似文献