首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-molecular-weight genomic DNA isolated from a human cutaneous squamous cell carcinoma (AS) was assayed for its ability to induce tumorigenic transformation of NIH 3T3 cells. Subcutaneous injection of NIH 3T3 cells cotransfected with DNAs from AS tumor and pSV2-neo plasmid not only induced tumors at the site of injection, but also metastasized spontaneously to the lungs in 100% of nude mice injected. DNA isolated from a representative primary tumor and a metastasis was again used in a second round of transfection. Injection of secondary transfectants into nude mice again resulted in induction of both subcutaneous tumors and spontaneous long metastases. Southern blot hybridization with ras-specific probes revealed that DNA from both primary tumors and metastases induced by AS tumor DNA contained highly amplified Ha-ras oncogene. Furthermore, DNAs from secondary tumors and metastases induced by DNA from a primary tumor and a metastasis also contained similar highly amplified Ha-ras oncogene. These results suggest that the amplified Ha-ras oncogene may be responsible for induction of both tumorigenic and metastatic phenotypes in NIH 3T3 cells transfected with DNA from AS tumor.  相似文献   

2.
Human Xeroderma pigmentosum "normal" fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental "normal" AS16 cells and a revertant clone (ASKXA Cl 1.1 G). Our results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.  相似文献   

3.
Background: Interleukin (IL)-23, composed of p19 and p40 subunits, has diverse functions in regulating immune systems, enhancing cell-mediated immunity. In the present study, we investigated whether forced expression of the p19-linked p40 gene in murine mammary cancer cells (MA891) produced antitumor effects in vivo. Tumor growth of MA-891 cells expressing IL-23 (IL-23/MA891) in mice was retarded compared with parental and vector DNA-transduced tumors and survival of the mice inoculated with IL-23/MA-891 cells was prolonged. Expressions of the CD4+ T cells and CD8+ T cells were up-regulated not only in IL-23/MA-891 tumor specimens but also in spleen cells of mice inoculated with IL-23/MA-891 as compared with those of mice inoculated with parental or vector DNA-transduced tumors. Cytotoxic CD8+ T lymphocyte (CTL) activity of spleen cells from mice inoculated with IL-23/MA-891 was also significantly higher than the other two groups. Th1-type cytokines such as interferon-γ, TNF-α and IL-12p70 secreted from spleen cells of mice bearing IL-23/MA-891 tumors were increased while Th2-type cytokine IL-4 was negative regulated. Moreover, we have identified that the quantity of DC in spleen cells of mice bearing IL-23/MA-891 tumors was increased as compared with those mice bearing parental or vector DNA-transfected tumors.  相似文献   

4.
Acidic and basic fibroblast growth factors (aFGF and bFGF) are mitogens for mesoderm- and neuroectoderm-derived cells. The facts that FGF-related proteins are oncogenic and that FGFs are expressed in a variety of tumor cell lines or tumor tissues suggest the transforming activities of FGFs. To examine such an activity of aFGF, we introduced a human aFGF expression vector into two populations of Rat-1 cells; one was non-transformed (nRat-1), the other was partially-transformed (tRat-1). tRat-1 cells transfected with aFGF cDNA formed larger colonies in soft agar and produced larger and more malignant tumors in nude mice than those of parental cells. In contrast, nRat-1 cells transfected with aFGF cDNA neither formed colonies in soft agar nor produced tumors in nude mice. Our results suggest that high expression of aFGF may enhance a tumorigenic potential of Rat-1 cells rather than confer such a potential de novo.  相似文献   

5.
Summary Cellular subclones of high and low tumorigenicity obtained from a mouse c-Ha-ras-transformed clone, were examined for their sensitivity to tumornecrosis-factor (TNF)-mediated cytotoxicity. Cells of the highly tumorigenic subclones showed a significantly enhanced resistance to the cytotoxic effect of TNF plus cyclohexamide (CHI) as compared to cells of the lowtumorigenic subclones. The enhanced resistance to TNF+CHI was not due to a lower expression of TNF receptors on the cells. The c-Ha-ras-transfected cells were transformed and maintained in culture only (C cells). In vivo passage of cells of the initially low-tumorigenic c-Ha-ras subclones through the mouse significantly enhanced the tumorigenic potential of these CTC cells (culture/tumor/culture). In correlation with their enhanced tumorigenicity, the CTC cells were highly resistant to TNF-mediated cytotoxicity as compared to C cells of the same subclone. Furthermore, the involvement of TNF in determining the tumorigenic phenotype of the c-Ha-ras-transformed cells was demonstrated in a more direct manner. Cells of a c-Ha-ras-transformed low-tumorigenic, highly TNF-sensitive subclone were selected by repeated cycles of in vitro exposure to TNF. As a result, a stable, highly TNF-resistant population of cells emerged. These TNF-resistant cells caused more tumors in mice as compared to their original TNF-sensitive cells. These results show that the resistance to the cytotoxic effect of TNF plus cyclohexamide may be involved, at least partially, in the tumorigenic potential of c-Ha-ras-transformed cells and suggest a possible role for TNF in the enhancement of the tumorigenic potential of these cells in mice.  相似文献   

6.
The multifunctional carcinoembryonic Ag cell adhesion molecule (CEACAM)1 protein has recently become the focus of intense immunological research. We have previously shown that the CEACAM1 homophilic interactions inhibit the killing activity of NK cells. This novel inhibitory mechanism plays a key role in melanoma immune evasion, inhibition of decidual immune response, and controlling NK autoreactivity in TAP2-deficient patients. These roles are mediated mainly by homophilic interactions, which are mediated through the N-domain of the CEACAM1. The N-domain of the various members of the CEACAM family shares a high degree of similarity. However, it is still unclear which of the CEACAM family members is able to interact with CEACAM1 and what are the amino acid residues that control this interaction. In this study we demonstrate that CEACAM1 interacts with CEACAM5, but not with CEACAM6. Importantly, we provide the molecular basis for CEACAM1 recognition of various CEACAM family members. Sequence alignment reveals a dichotomy among the CEACAM family members: both CEACAM1 and CEACAM5 contain the R and Q residues in positions 43 and 44, respectively, whereas CEACAM3 and CEACAM6 contain the S and L residues, respectively. Mutational analysis revealed that both 43R and 44Q residues are necessary for CEACAM1 interactions. Implications for differential expression of CEACAM family members in tumors are discussed.  相似文献   

7.
CX+/CX- and Colo+/Colo- tumor sublines with stable heat shock protein 70 (Hsp70) high and low membrane expression were generated by fluorescence activated cell sorting of the parental human colon (CX2) and pancreas (Colo357) carcinoma cell lines, using an Hsp70-specific antibody. Two-parameter flow cytometry revealed that Hsp70 colocalizes with Bag-4, also termed silencer of death domain, not only in the cytosol but also on the plasma membrane. After nonlethal gamma-irradiation, the percentage of membrane-positive cells and the protein density of Hsp70 and Bag-4 were found to be strongly upregulated in carcinoma sublines with initially low expression levels (CX-, Colo-). Membrane expression of Hsp70 was also elevated in Bag-4 overexpressing HeLa cervix carcinoma cells when compared to neo-transfected cells. In response to gamma-irradiation, neo-transfected HeLa cells behaved like Hsp70/Bag-4 low-expressing CX- and Colo-, and Bag-4-transfected HeLa cells like Hsp70/Bag-4 high-expressing carcinoma sublines CX+ and Colo+. Immunoprecipitation studies further confirmed colocalization of Hsp70 and Bag-4 but also point to an association of Hsp70 and Hsp40 on the plasma membrane of CX+ and Colo+ cells; on CX- and Colo- tumor sublines, Hsp40 was detectable in the absence of Hsp70 and Bag-4. Other co-chaperones including Hsp60 and Hsp90 were neither found on the cell surface of CX+/CX-, Colo+/Colo- nor on HeLa neo-/HeLa Bag-4-transfected tumor cells. Functionally, Hsp70/Bag-4 and Hsp70/Hsp40 membrane-positive tumor cells appeared to be better protected against radiation-induced effects, including G2/M arrest and growth inhibition, on the one hand. On the other hand, membrane-bound Hsp70, but neither Bag-4 nor Hsp40, served as a recognition site for the cytolytic attack mediated by natural killer cells.  相似文献   

8.

Background

This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice.

Methods

Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres.

Results

It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells.

Conclusions

Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.  相似文献   

9.
The susceptibility to natural killer (NK)-mediated cell lysis of Adenovirus type 2 (Ad2)-transformed rat embryo fibroblast cell lines, which differed markedly in tumorigenic potential in vivo (T2C4 greater than F19 greater than F17), was investigated by using NK effector cells from F344 rat or athymic nude rat spleens. A comparison of the degree of NK-mediated lysis obtained with these tumor cell targets suggested a direct relationship between the resistance of a cell to NK cell lysis and its potential to form tumors in vivo. The cells were lysed in the following order of increasing susceptibility: T2C4 less than F4 less than F19 less than F17. Whether T cells or macrophages played a significant role in the observed lytic activity was determined by treating the NK effector cell population with anti-rat T cell serum (alpha T) and complement or by depletion of macrophages after binding to a glass bead column and treatment with carbonyl iron. A series of clonal sublines derived from the parental F17 and F4 cell lines further strengthened this relationship between tumorigenesis and resistance to NK-mediated cell lysis. Tumorigenic subclones from the non-tumorigenic F17 parental cells were demonstrated to be comparatively resistant to NK-mediated lysis. Tumorigenic subclones from tumorigenic F4 parental cell population showed a susceptibility to NK-mediated cell lysis virtually identical to the parental F4 cells. The implication of these results are discussed.  相似文献   

10.
The Epstein-Barr virus LMP2A protein was expressed in a human keratinocyte cell line, HaCaT, and effects on epithelial cell growth were detected in organotypic raft cultures and in vivo in nude mice. Raft cultures derived from LMP2A-expressing cells were hyperproliferative, and epithelial differentiation was inhibited. The LMP2A-expressing HaCaT cells were able to grow anchorage independently and formed colonies in soft agar. HaCaT cells expressing LMP2A were highly tumorigenic and formed aggressive tumors in nude mice. The LMP2A tumors were poorly differentiated and highly proliferative, in contrast to occasional tumors that arose from parental HaCaT cells and vector control cells, which grew slowly and remained highly differentiated. Animals injected with LMP2A-expressing cells developed frequent metastases, which predominantly involved lymphoid organs. Involucrin, a marker of epithelial differentiation, and E-cadherin, involved in the maintenance of intercellular contact, were downregulated in LMP2A tumors. Whereas activation of the mitogen-activated protein kinase pathway was not observed, phosphatidylinositol-3-kinase (PI3-kinase)-dependent activation of the serine-threonine kinase Akt was detected in LMP2A-expressing cells and LMP2A tumors. Inhibition of this pathway blocked growth in soft agar. These data indicate that LMP2A greatly affects cell growth and differentiation pathways in epithelial cells, in part through activation of the PI3-kinase-Akt pathway.  相似文献   

11.
Experiments were designed to test the hypothesis that transformed cells that are NC sensitive must escape NC activity if they are to grow as tumors in normal individuals. NC-resistant variants were selected either in vivo or in vitro from NC-sensitive cell lines that grow as tumors in immunodeficient mice but not in syngeneic normal mice. The tumorigenicity of cloned NC-resistant variants was compared with the parental cell lines and to cell lines that went through the selection procedure, but after cloning remained NC sensitive. Cloned NC-resistant cell lines derived from tumors that developed in x-irradiated nude mice after the injection of an NC-sensitive cell line are tumorigenic in normal mice, whereas cloned NC-sensitive cell lines derived from the same tumors are unable to grow as tumors in normal mice. Similarly, six of seven NC-resistant cloned cell lines independently isolated after in vitro selection for NC-resistance are tumorigenic in normal mice, whereas cloned NC-sensitive cell lines isolated from the same in vitro selected populations are not tumorigenic in normal mice. Thus, either the in vivo or in vitro selection of NC-resistant cells selects for cells tumorigenic in normal mice; these findings, along with our previous observations that selection for cells tumorigenic in normal mice selects for NC resistance, provide compelling evidence that escape from NC activity is required before some transformed cells can grow as tumors in normal mice.  相似文献   

12.
Transfection of a functional major histocompatibility complex class I gene into certain tumor cells, induced by oncogenic viruses or chemical carcinogens, can effectively abrogate their tumorigenic activity. Since experimentally induced tumors possess strong tumor-specific transplantation antigens, expression of cell surface class I antigens may present the tumor cells to appropriate immune effector cells. Most spontaneously arising tumors do not possess tumor-specific transplantation antigens, and their tumorigenicity may not be affected by the expression of a transfected class I gene. We demonstrate that the poorly immunogenic B16-BL6 melanoma can be rendered nontumorigenic in syngeneic mice by the expression of the class I H-2K antigen but not the class II I-A antigen. Furthermore, the poorly tumorigenic, class I-expressing B16-BL6-transfected cells can effectively immunize syngeneic C57BL/6 mice against the highly tumorigenic, class I-deficient B16-BL6 parental cells. Our success in experimentally manipulating the tumorigenicity of a spontaneously derived neoplasm offers hope for a potential modality for the effective treatment of human cancer.  相似文献   

13.
Hybrid cells produced by the fusion of pairs of cells, one a tumorigenic derivative of CHEF/16 and the other a nontumorigenic derivative of CHEF/18, give rise to clones which are largely tetraploid, but rare reduced hybrids with chromosome counts in the diploid range have been recovered from tumors of hybrid origin. This paper describes the recovery in cell culture of reduced hybrids in the diploid range by selection with 5-bromodeoxyuridine (BrdU) or methylcellulose as well as by growth in culture of cells from excised tumors. All selected subclones were tumorigenic and resistant to BrdU, but they segregated for resistance to 6-thioguanine. Unselected subclones were tetraploid, nontumorigenic, and sensitive to both drugs. These data show that chromosome reassortment as well as extensive chromosome reduction both occur in a small fraction of the population during growth of each hybrid clone.  相似文献   

14.
The tumorigenicity of adenovirus type 12 (Ad12)-transformed cells has been attributed to the low levels of class I major histocompatibility complex (MHC) protein expression by these cells. These levels of class I proteins are thought to be below the threshold critical for cytotoxic T-lymphocyte recognition, a process that may be involved in tumor cell immunosurveillance. We have used gene transfer experiments to investigate the role played by class I protein expression in the tumorigenicity of Ad12-transformed BALB/c mouse cells in naive, syngeneic adult mice. Our Ad12-transformed mouse cells were tumorigenic in adult mice and were similar to other Ad12-transformed mammalian cells in that they expressed low levels of class I MHC mRNA and cell surface proteins. Despite these low levels of expression, the cells were highly immunogenic in syngeneic mice and were rejected as allografts by allogeneic mice. Transfection of genomic H-2Dd or H-2Ld fragments into these cells produced a variety of cell clones that expressed increased levels of cell surface class I proteins. These cells expressing high levels of class I protein were up to 16-fold more tumorigenic than the parental cells in syngeneic adult mice. Thus, by quantitative assays, the tumorigenicity of Ad12-transformed BALB/c mouse cells is not functionally related to the low levels of class I MHC proteins they express. The increased tumorigenicity expressed by H-2Dd- and H-2Ld-transfected cells was not detected in BALB/c nu/nu mice, suggesting that a thymus-dependent mechanism that is not mediated by evasion of cytotoxic T-lymphocyte recognition could contribute to the difference in tumorigenicity of Ad12-transformed BALB/c mouse cells that express low and high levels of class I MHC proteins.  相似文献   

15.
We studied the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptors (GM-CSF.R) in 20 human brain gliomas with different tumor gradings and demonstrated constitutive high levels of both mRNA gene expression and protein production exclusively in the highest-grade tumors (WHO, III-IV grade). Five astrocytic cell lines were isolated in vitro from glioma cells, which had selectively adhered to plates pre-coated with rhGM-CSF. These cells were tumorigenic when xenografted to athymic mice, and produced GM-CSF constitutively in culture. Two lines, particularly lines AS1 and PG1, each from a patient with glioblastoma multiforme, constitutively over-expressed both GM-CSF and GM-CSF.R genes and secreted into their culture media biologically active GM-CSF. Different clones of the AS1 line, isolated after subsequent passages in vitro and then transplanted to athymic mice, demonstrated higher tumorigenic capacity with increasing passages in vivo. Cell proliferation was stimulated by rhGM-CSF in late-stage malignant clones, whereas apoptosis occurred at high frequency in the presence of blocking anti-GM-CSF antibodies. In contrast, rhGM-CSF did not induce any apparent effect in early-stage clones expressing neither GM-CSF nor GM-CSF.R. The addition of rhGM-CSF or rhIL-1β, to cultures induced the overproduction of both GM-CSF and its receptors and increased gene activation for several functional proteins (e.g. NGF, VEGF, VEGF.R1, G-CSF, MHC-II), indicating that these cells may undergo dynamic changes in response to environmental stimuli. These findings thus revealed: (1) that the co-expression of both autocrine GM-CSF and GM-CSF.R correlates with the advanced tumor stage; (2) that an important contribution of GM-CSF in malignant glioma cells is the prevention of apoptosis. These results imply that GM-CSF has an effective role in the evolution and pathogenesis of gliomas.  相似文献   

16.
ObjectiveRecent studies have shown that carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) may serve as an independent predictor of advanced gastric cancer (GC). The purpose of this research is to explore the patterns of expression, functions, and upstream regulatory pathway of CEACAM5 in GC.MethodsThe levels of miR-498 and CEACAM5 expression in GC cells and tissues were measured via qRT-PCR. Wound-healing, CCK-8, and western blotting experiments were conducted for the evaluation of GC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), respectively. The targeting relationship between miR-498 and CEACAM5 was validated via pull-down and luciferase reporter assays. Xenograft tumor mouse models were established to observe CEACAM5’s influence on the growth of tumors in vivo.ResultsElevated levels of CEACAM5 were detected among the GC cells and tissues. The results of the in vitro experiments revealed that the knockdown of CEACAM5 in GC cells significantly inhibited their proliferation, migration, and EMT. Moreover, CEACAM5 inhibition effectively hampered GC cell growth within the nude mice. Moreover, miR-498 directly targeted CEACAM5. MiR-498 downregulation had been observed among the cells and tissues of GC. The stimulation of GC cell proliferation, migration, and EMT, which had been engendered by CEACAM5 overexpression, was reversible through the overexpression of miR-498.ConclusionThe outcomes of this research suggest that miR-498 is capable of repressing the proliferation, migration, and EMT of GC cells through CEACAM5 downregulation.  相似文献   

17.
It was recently proposed that UDP-galactose:ceramide galactosyltransferase (UGT8), enzyme responsible for synthesis of galactosylceramide (GalCer), is a significant index of tumor aggressiveness and a potential marker for the prognostic evaluation of lung metastases in breast cancer. To further reveal the role of UGT8 and GalCer in breast cancer progression, tumorigenicity and metastatic potential of control MDA-MB-231 cells (MDA/LUC) and MDA-MB-231 cells (MDA/LUC-shUGT8) with highly decreased expression of UGT8 and GalCer after stable expression of shRNA directed against UGT8 mRNA was studied in vivo in athymic nu/nu mice. Control MDA/LUC cells formed tumors and metastatic colonies much more efficiently in comparison to MDA/LUC-shUGT8 cells with suppressed synthesis of GalCer after their, respectively, orthotopic and intracardiac transplantation. These findings indicate that UGT8 and GalCer have a profound effect on tumorigenic and metastatic properties of breast cancer cells. In accordance with this finding, immunohistochemical staining of tumor specimens revealed that high expression of UGT8 accompanied by accumulation of GalCer in MDA-MB-231 cells is associated with a much higher proliferative index and a lower number of apoptotic cells in comparison to the MDA/LUC-shUGT8 cells. In addition, it was found that expression of UGT8 in MDA-MB-231 cells increased their resistance to apoptosis induced by doxorubicin in vitro. Therefore, these data suggest that accumulation of GalCer in tumor cells inhibits apoptosis, which would facilitates metastatic cells to survive in the hostile microenvironment of tumor in target organ.  相似文献   

18.
By a proteomics‐based approach, we identified an overexpression of fascin in colon adenocarcinoma cells (FPCKpP‐3) that developed from nontumorigenic human colonic adenoma cells (FPCK‐1–1) and were converted to tumorigenic by foreign‐body‐induced chronic inflammation in nude mice. Fascin overexpression was also observed in the tumors arising from rat intestinal epithelial cells (IEC 6) converted to tumorigenic in chronic inflammation which was induced in the same manner. Upregulation of fascin expression in FPCK‐1–1 cells by transfection with sense fascin cDNA converted the cells tumorigenic, whereas antisense fascin‐cDNA‐transfected FPCKpP‐3 cells reduced fascin expression and lost their tumor‐forming ability in vivo. The tumorigenic potential by fascin expression was consistent with their ability to survive and grow in the three‐dimensional multicellular spheroids. We found that resistance to anoikis (apoptotic cell death as a consequence of insufficient cell‐to‐substrate interactions), which is represented by the three‐dimensional growth of solid tumors in vivo, was regulated by fascin expression through caspase‐dependent apoptotic signals. From these, we demonstrate that fascin is a potent suppressor to caspase‐associated anoikis and accelerator of the conversion of colonic adenoma cells into adenocarcinoma cells by chronic inflammation.  相似文献   

19.
We found previously that transforming growth factor-beta 1 (TGF beta 1) mRNA levels are markedly elevated in rat prostate cancer (Dunning R3327 sublines) compared to levels in normal prostate. Our goal was to determine whether elevated expression of TGF beta 1 is biologically relevant to prostate cancer growth in vivo. We chose as our model the R3327-MATLyLu prostate cancer epithelial cell line, which produces metastatic anaplastic tumors when reinoculated in vivo. Our approach was to stably transfect MATLyLu cells with an expression vector that codes for latent TGF beta 1 and to isolate subclones of cells that over-expressed TGF beta 1 mRNA. We also isolated a subclone of MATLyLu cells transfected with a control vector lacking the TGF beta 1 cDNA insert. We then studied the growth of these cells in vivo and in vitro. Twenty days after sc inoculation of 10(6) cells in vivo, TGF beta 1-overproducing MATLyLu tumors were 50% larger, markedly less necrotic, and produced more extensive metastatic disease (lung metastases in 73% of all lobes and lymph node metastases in 88% of animals) compared to control MATLyLu tumors (lung metastases, 21%; lymph node metastases, 7%). Thus, TGF beta 1 produced in vivo is biologically active and can promote prostate cancer growth, viability, and aggressiveness, perhaps via effects on the host and/or on the tumor cells themselves. When followed in vitro, TGF beta 1-overproducing cells became growth inhibited, but this effect was transient as cells subsequently resumed proliferating. Growth inhibition was due to TGF beta, because it could be prevented by TGF beta-neutralizing antibody. Therefore, prostate cancer cells can activate and respond to secreted latent TGF beta 1, and although the cells are transiently inhibited in vitro, there is no net inhibition of growth. The ability of the cells to respond to endogenously produced TGF beta 1 suggests that TGF beta 1 overexpression enhances tumor growth in vivo at least in part via an effect of TGF beta 1 on the tumor cells themselves.  相似文献   

20.
Respiratory syncytial virus (RSV) causes intense pulmonary inflammatory responses in some infected infants. The surface attachment protein 'G' of RSV has membrane-bound and secreted forms and shows homology to the CX3C chemokine fractalkine. Using recombinant techniques, we generated replication-competent recombinant clonal RSV expressing normal G proteins ('rRSV') or only the membrane-bound form of G ('Gmem rRSV'). Both recombinants grew well in HEp-2 cells, but after primary intranasal infection in mice, pulmonary Gmem rRSV replication was reduced tenfold compared to parental or rRSV; moreover, CCL2 and CCL5 production was greatly reduced and no apparent disease or pulmonary cellular infiltration was observed. However, Gmem rRSV-infected mice developed good antibody responses and were fully protected against subsequent intranasal challenge with parental virus. Even in mice sensitized to G by cutaneous infection with recombinant vaccinia expressing G, intranasal challenge with Gmem rRSV caused insignificant disease. We conclude that secreted G is a key viral product assisting virus replication in vivo, enhancing CCL2 and CCL5 production and promoting illness. Engineered RSV mutants lacking the ability to secrete G are thus promising vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号