首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine (1 μM) was incubated in the presence of dialyzed crude tissue extract from mouse liver and its degradation determined. At high concentration of tissue extract, a fraction of adenosine was not metabolized. This phenomenon, termed sequestration of adenosine, was shown to be affected in the same way by the same factors (pH, salt, reducing agent and adenine) as those affecting the protection of adenosine against deamination in the presence of the purified cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase from mouse liver (Sæbø, J. and Ueland, P.M. (1979) Biochim. Biophys. Acta 587, 333–340). These data point to a role of this protein in the sequestration of adenosine in crude extract.The sequestration potency in crude extract could be determined by diluting the extract in the presence of a constant amount of adenosine deaminase added to the tissue extract. Under these conditions there was linearity of adenosine not available for degradation versus the concentration of tissue extract, and a total recovery of the sequestration potency of purified binding protein added to the crude extract was observed.The tissue level of the cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase in mouse liver was determined by two independent procedures based on the sequestration of adenosine and the hydrolysis of S-adenosylhomocysteine, respectively. The intracellular concentration was calculated to be 10 μM.The sequestration of adenosine in crude extract from mouse, rat, rabbit and bovine tissues was determined and showed requirements similar to those of the sequestration in mouse liver extract.The ability to sequester adenosine was high in liver and decreased in the following order: liver, kidney, adrenal cortex, brain, uterus, cardiac and skeletal muscle.  相似文献   

2.
A cyclic AMP-adenosine binding protein, whose binding sites are activated by preincubation in the presence of Mg+-ATP, has been purified to apparent homogeneity from mouse liver (P.M. Ueland and S.O. Døskeland, 1977, J. Biol. Chem.,252, 677–686). The degree of activation of both the cyclic AMP binding site and a high-affinity site for adenosine depends on the concentration of ATP during the preincubation. The velocity and the degree of activation are dependent on the temperature and the presence of Mg2+ and K+. The NH4+ ion can be substituted for K+, whereas Na+ is inefficient. Low pH promotes the conversion from the inactive to the active form. The apparent affinity for adenosine to the high-affinity site for this adenine derivative and the affinity for cyclic AMP to the site specific for this nucleotide are independent of the degree of activation as judged from the slope of Scatchard plots. The activation of the cyclic AMP binding site by ATP (6 mm) was determined at pH 7 in the presence of 10 μm cyclic AMP, AMP, ADP, or adenosine. Adenosine specifically inhibits the activation and does not promote the inactivation of the binding protein. The possibility that the apparent inhibition of activation was effected by interference with cyclic AMP binding by adenosine was ruled out.  相似文献   

3.
A cyclic AMP-adenosine binding protein from mouse liver has been purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis in the absence and presence of sodium dodecyl sulfate and by analytical ultracentrifugation. The binding protein had a Stokes radium of 48 A based on gel chromatography. Both the purified binding protein and the binding activity in fresh cytosol sedimented as 9 S on sucrose gradient centrifugation. The homogeneous protein had a sedimentation coefficient (S20, w) of 8.8 x 10-13 s, as calculated from sedimentation velocity experiments. By use of the Stokes radius and S20, w', the molecular weight was calculated to be 180,000. The protein was composed of polypeptides having the same molecular weight of 45,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thus appeared to consist of four subunits of equal size. The isoelectric point, pI = 5.7. The binding capacity for cyclic AMP increased by preincubating the receptor protein in the presence of Mg2+ ATP. This process, tentatively termed activation, was studied in some detail and was shown not be be be accompanied by dissociation, aggregation, or phosphorylation of the binding protein. Cyclic AMP was bound to the protein with an apparent dissociation constant (Kd) of 1.5 x 10-7 M. The binding of cyclic AMP was competitively inhibited by adenosine, AMP, ADP, and ATP whose inhibition constants were 8 x 10-7 M, 1.2X 10-6 M, 1.5 X 10-6 M, and higher than 5 x 10-6 M respectively. A hyperbolic Scatchard plot was obtained for the binding of adenosine to the activated binding protein, indicating more than one site for adenosine. The binding of adenosine to the site with the highest affinity (Kd=2 x 10-7 M) for this nucleoside was not suppressed by excess cyclic AMP and was thus different from the aforementioned cyclic AMP binding site. Cyclic GMP, GMP, guanosine, cyclic IMP, IMP, and inosine did not inhibit the binding of either cyclic AMP or adenosine. The binding protein had no cyclic AMP phosphodiesterase, adenosine deaminase, phosphofructokinase, or protein kinase activities, nor does it inhibit the catalytic subunit of the cyclic AMP-dependent protein kinase.  相似文献   

4.
1. Adenosine bound to the cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase from mouse liver was partly converted to a product which was identified as adenine in four chromatographic systems. Ribose was formed in equivalent amounts. 2. The time course of the reaction was characterized by an initial burst phase lasting for less than one second followed by a slow progressive phase. The reaction was partly reversed by prolonged incubation, slow denaturation of the protein, dilution of the incubation mixture and removal of adenosine by converting it to inosine by the enzyme adenosine deaminase. 3. Both the ATP-treated (Ueland, P.M. and D?skeland, S.O. (1978) Arch. Biochem. Biophys. 185, 195--203) and the non-treated protein were subjected to polyacrylamide gel electrophoresis at pH 8.8. The adenosine-adenine, the cyclic AMP binding activities and the conversion activity comigrated with the main protein band, indicating that these properties reside on the same protein molecule. 4. Adenine generated by hydrolysis of adenosine was mainly bound to the protein as judged by nearly complete reversion of the conversion upon dilution in the presence of excess unlabelled adenine and by Sephadex G-25 chromatography. 5. The conversion of adenosine to inosine by the enzyme adenosine deaminase was decreased in the presence of the binding protein. 6. Adenine formation could also be demonstrated under condition of enzymic formation of S-adenosylhomocysteine, i.e. in the presence of hymocysteine.  相似文献   

5.
A number of physiochemical properties of the cyclic AMP-adenosine binding protein of mouse liver (Ueland, P.M. and D?skeland, S.O. (1977) J. Biol. Chem. 252, 677--686) have been studied. 1. The specific extinction coefficient, E1%280nm, was estimated to 13.0. 2. Amino acid and amide group analyses confirmed the acidic properties of the protein as determined by electrofocusing (pI = 5.7). Based on the estimated partial specific volume (v = 0.74 cm3/g) the minimum molecular weight of the native, tetrameric protein was recalculated to be 185 000 (s20,w = 8.8 . 10(-13) s and Stokes radius = 48 A). 3. No NH2-terminal amino acid was found by the dansyl method using [14C]-dansyl chloride, indicating that the NH2-terminal groups are blocked. 4. Amino acid analyses gave 6 half-cystine residues per subunit, and the same number of free sulfhydryl groups was found by titration of the denatured protein with 5,5'-dithiobis (2-nitrobenzoic acid). 5. The reactivity of the SH groups in the native protein with 5,5'-dithiobis (2-nitrobenzoic acid) revealed rapidly reacting (SHI), sluggishly reacting (SHII) and "masked" (SHIII) SH groups. ATP, adenosine, Mg2+ and KCl, factors known to affect the activation of cyclic AMP binding sites (Ueland, P.M. and D?skeland, S.O. (1978) Arch. Biochem. Biophys., in press) changed the reactivity of separate SH groups.  相似文献   

6.
A heat-stable protein was extracted from brown adipose tissue of infant rats that inhibited both purified bovine heart protein kinase and a crude preparation of protein kinase from brown fat. It did not act as an adenosine triphosphatase nor did it exert its effect by proteolytic action. Inhibition of protein kinase was affected in both the presence and the absence of cyclic AMP. Most of the inhibitory activity was present in the 100000g supernatant fraction of tissue homogenates. Inhibitory activity was highest perinatally and it declined 10 days after birth. It is suggested that the protein kinase inhibitor may play a role in regulating cyclic AMP actions.  相似文献   

7.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

8.
Evidence has been presented for the existence in rat liver of P2-purinoceptors which are involved in the control of glycogenolysis. Isolated rat hepatocytes and purified liver plasma membranes have been used to study the binding of the ATP analogue adenosine 5'-[alpha- [35S]thio]triphosphate (ATP alpha [35S]) to these postulated P2-purinoceptors. The nucleotide analogue behaves as a full agonist for the activation of glycogen phosphorylase in isolated hepatocytes, 0.3 microM being required for half-maximal activation. Specific binding of ATP alpha [35S] to hepatocytes and plasma membranes occurs within 1 min and is essentially reversible. The analysis of the dose-dependency at equilibrium indicates the presence of binding sites with Kd of 0.23 microM with hepatocytes and Kd of 0.11 microM with plasma membranes. The relative affinities of 10 nucleotide analogues were deduced from competition experiments for ATP alpha [35S] binding to hepatocytes, and these correlated highly with their biological activity (activation of glycogen phosphorylase in hepatocytes). For all the agonists, binding occurs in the same concentration range as the biological effect. These data clearly suggest that the detected binding sites correspond to the physiological P2-purinoceptors involved in the regulation of liver glycogenolysis. The rank order of potency of some ATP analogues suggests that liver possesses the P2Y-subclass of P2-purinoceptors.  相似文献   

9.
The biological and immunological gonadotropin-releasing hormone (GnRH)-like activities in rabbit fetal placentas collected at Day 18 of gestation were investigated. Both crude and partially purified acid extracts of placental tissue were tested. A similarly prepared liver extract served as a control. Immunological GnRH-like activity, determined through a GnRH radioimmunoassay was 1.3-2.0 pg/mg protein for the crude placental extract, 7.1-9.2 pg/mg protein for the partially purified placental extract and was nondetectable for liver extract. Both the crude and partially purified placental extracts increased (P less than 0.01) luteinizing hormone (LH) release by dispersed rabbit pituitary cells, whereas the liver extract had no effect. The (Ac-D-p-Cl-Phe1,2, D-Trp3, D-Arg6, D-Ala10)-GnRH antagonist was used to determine whether the biological GnRH-like activity in the placental extract was mediated through GnRH receptors. All three doses of antagonist (10, 100 and 1000 ng) suppressed the biological GnRH-like activity in the placental extracts. Molecular sieve chromatography of the partially purified placental extract showed that the immunoreactive GnRH-like factor eluted in the same fractions as the GnRH standard. These data indicate that the rabbit fetal placenta has both immunological and biological GnRH-like activity.  相似文献   

10.
The binding affinities of the diastereoisomers of adenosine 3',5'-(cyclic)phosphorothioate, Sp-cAMP[S] and Rp-cAMP[S], for the cyclic AMP- (cAMP-)binding sites on purified and reconstituted pig heart type II cAMP-dependent protein kinase holoenzyme were determined by measuring the ability of these compounds to displace [3H]cAMP from this enzyme. Sp-cAMP[S], a cAMP agonist, displaced 50% of the [3H]cAMP bound to the holoenzyme at a concentration 10-fold higher than that of cAMP; Rp-cAMP[S], a cAMP antagonist, required a 100-fold higher concentration relative to cAMP. Activation of the isolated holoenzyme, determined as phosphotransferase activity, was measured in the presence of the agonist and in the absence and in the presence of increasing concentrations of the antagonist. The results of fitting the activation data to sigmoid curves with a non-linear-regression program and to Hill plots by using a linear-regression program showed that Rp-cAMP[S] had no effect on Vmax, increased the EC50 values for agonist activation and had no effect on the co-operativity of activation (h). A Ki value of 11 microM was determined for Rp-cAMP[S] inhibition of cAMP-induced activation of purified type II cAMP-dependent protein kinase. Electrophoresis of the holoenzyme on polyacrylamide gels under non-denaturing conditions in the presence of saturating concentrations of the diastereoisomers resulted in 100% dissociation of the subunits with Sp-cAMP[S] and 0% dissociation with Rp-cAMP[S]. Sp-cAMP[S], the isomer with an axial exocyclic sulphur atom, binds to the holoenzyme, releases the catalytic subunit and activates the phosphotransferase activity. Rp-cAMP[S], the isomer with an equatorial exocyclic sulphur atom, binds to the holoenzyme but does not result in dissociation, and thus acts as a competitive inhibitor of phosphotransferase activity.  相似文献   

11.
The presence of adenosine (25-250 microM) or of 2-chloroadenosine (2.5-100 microM) in the incubation medium caused a marked decrease in the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. This effect was accompanied by an increase in the concentration of cyclic AMP, an activation of phosphorylase and of fructose 2,6-bisphosphatase, and an inactivation of pyruvate kinase and of 6-phosphofructo-2-kinase. As a rule, the changes in the fructose 2,6-bisphosphate-modifying system were slower but more persistent than those in the activities of phosphorylase and pyruvate kinase. The effect of the nucleoside to decrease the concentration of fructose 2,6-bisphosphate was not affected by an inhibitor of adenosine transport and could not be obtained in a liver high-speed supernatant. These data indicate that the effect of adenosine to decrease the concentration of fructose 2,6-bisphosphate is mediated by the stimulation of adenylate cyclase, secondary to the binding of adenosine to membranous receptors. Like glucagon, 2-chloroadenosine stimulated gluconeogenesis in isolated hepatocytes, whereas adenosine had an opposite effect.  相似文献   

12.
Membranes prepared from calf brain were solubilized and chromatographed on a column containing 5'-amino-5'-deoxyadenosine covalently linked to agarose through the 5'-amino group. When the column was eluted with adenosine, a pure protein emerged with subunit molecular mass of 28 kDa. The protein was extracted from the membranes with sodium cholate, but not with 100 microM-adenosine or 0.5 M-NaCl. A similar 28 kDa protein was isolated from the soluble fraction of calf brain. The yield of membrane-bound and soluble 28 kDa protein per gram of tissue was about the same. The 28 kDa protein was also found in membrane and soluble fractions of rabbit heart, rat liver and vascular smooth muscle from calf aorta. The yield per gram of tissue fell into the order brain greater than heart approximately vascular smooth muscle greater than liver for the 28 kDa protein from the membrane fraction, and brain approximately heart greater than vascular smooth muscle greater than liver for the 28 kDa protein from the soluble fraction. Polyclonal antibodies to pure 28 kDa protein from calf brain membranes cross-reacted with the 28 kDa protein from calf brain soluble fraction and with 28 kDa proteins isolated from other tissues. The 28 kDa protein from calf brain membranes was also eluted from the affinity column by AMP and 2',5'-dideoxyadenosine, but at a concentration higher than that at which adenosine eluted the protein, but N6-(R-phenylisopropyl)adenosine, 5'-N-ethylcarboxamidoadenosine, ADP, ATP, GTP, NAD+, cyclic AMP and inosine failed to elute the protein at concentrations up to 1 mM. The 28 kDa protein from the soluble fraction was not eluted by 3 mM-AMP or 1 mM-N6-(R-phenylisopropyl)adenosine,-5'-N-ethylcarboxamidoadenosine or -cyclic AMP. Unexpectedly, the soluble 28 kDa protein was eluted by AMP in the presence of sodium cholate. Soluble 28 kDa protein from calf brain had a KD for adenosine of 12 microM. Membrane 28 kDa protein from calf brain had a KD of 14 microM in the presence of 0.1% sodium cholate. Amino acid compositions of the 28 kDa proteins were similar, but not identical.  相似文献   

13.
An assay for cyclic AMP is described which takes advantage of the high affinity of the dissociated receptor moiety of cyclic AMP-dependent protein kinase I for the nucleotide. The kinase is kept dissociated by salt (800 mM-NaCl/30mM-EDTA). In the presence of a simply prepared heat-stable protein fraction the binding reagent is stable for the time needed to reach equilibrium of binding. A simple procedure [precipitation with poly-(ethylene glycol) followed by DEAE-cellulose chromatography] is described for the separation of protein kinase I from other binding proteins for cyclic AMP in rabbit skeletal muscle. The sensitivity, precision, reproducibility and specificity of the assay compared favourably with those of other cyclic AMP assays. The main advantage of the present assay is its resistance towards non-specific interference from a number of salts, tissue-culture media and substances found in crude tissue extracts. The reliability of cyclic AMP measurement directly in crude tissue extracts was ensured by removal of the assayable cyclic AMP with cyclic nucleotide phosphodiesterase digestion or adsorption with antibody against cyclic AMP, by comparison with measurement in tissue extracts purified by chromatography on QAE-Sephadex or sequentially on Dowex 50, and aluminium oxide as well as by dilution and recovery experiments.  相似文献   

14.
A glutamate-binding protein was solubilized from rat brain synaptic plasma membranes using sodium cholate. Its properties were characterized after addition of exogenous phospholipids and formation of proteoliposomes. Glutamate binding was dependent on calcium and chloride ions with maximal binding at concentrations of 10(-5) M calcium and 10 mM chloride ions. The effects of the two ions were synergistic rather than additive. In addition, glutamate binding was not affected by inhibitors specific for N-methyl-D-aspartate and kainate receptor subtypes, but was inhibited by quisqualate (Ki = 50 microM) and DL-2-amino-4-phosphonobutyrate (Ki = 1.3 mM). Furthermore, binding was abolished by 100 microM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and 1 mM dithiothreitol. These properties resemble those of the chloride- and calcium-dependent binding site. Starting from the detergent extract, the glutamate-binding protein was purified 123-fold using fractionated ammonium sulfate precipitation, chromatography on hydroxyapatite and on DEAE-Sephacel as sequential purification steps. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein fraction showed two major bands migrating with Mr values of 51,000 and 105,000. The properties of the partially purified binding protein were similar to those of the detergent extract. Glutamate binding to the partially purified protein is not due to a sequestration process or product binding to N-acetylated alpha-linked dipeptidase. Thus, the functional role of the binding protein remains to be established.  相似文献   

15.
A cyclic AMP binding protein has been purified to electrophoretic homogeneity from Jerusalem artichoke rhizome tissues. Its MW is ca. 240 000 and the apparent constant of cyclic AMP binding to the protein is 2.3 × 10?7 M. When tested using Millipore filter assay, cyclic AMP binding activity was enhanced by protamine and histone, but not by casein and phosvitin. Of several purine derivatives tested, only 5′-AMP and adenosine inhibited significantly the binding of cyclic AMP by the protein. The protein also binds adenosine and this binding is not affected by cyclic AMP or by other purine derivatives. The apparent binding constant for adenosine is 1.0 × 10?6 M. The binding protein did not show protein kinase activity. In addition, it did not affect the chromatin-bound DNA dependent RNA polymerase of homologous origin, either in the presence or absence of cyclic AMP. The binding protein is devoid of the following activities: cyclic AMP phosphodiesterase, 5′-nucleotidase, adenosine deaminase and ATPase.  相似文献   

16.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was purified from the guinea pig fetal lung, a tissue shown to be the richest in this enzyme in all mammalian sources examined, and its general properties studied. The enzyme was purified 150-fold from crude extract by steps of pH 5.4 isoelectric precipitation, Sephadex G-200 filtration, hydroxylapatite treatment and DEAE-cellulose chromatography. The purified enzyme, free from contamination with adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase, had a specific activity at least equivalent to 600-fold purification of the enzyme from the adult lung. The pulmonary enzyme exhibited an absolute requirement of protein kinase modulator (prepared from various mammalian tissues with an exception of skeletal muscle) for its activity. Inhibitor protein of cyclic AMP-dependent protein kinase purified from rabbit skeletal muscle could not stimulate nor inhibit the cyclic GMP target enzyme, indicating the factors from mammalian sources regulating the two classes of protein kinases may not be the same. The enzyme had Ka values of 1.3 times 10(-8) and 3.3 times 10(-8) M for 8-bromo cyclic GMP and cyclic GMP, respectively, compared to 3.0 times 10(-6) M for cyclic AMP. Cyclic GMP lowered the Km of the enzyme for ATP from 6.3 times 10(-5) M in its absence to 2.1 times 10(-5) M in its presence, accompanied by an approximate doubling of the Vmax. The molecular weight of the enzyme (assayed by its catalytic and cyclic GMP-binding abilities) was estimated to be 123,000, corresponding to a sedimendation coefficient of 7.06 S, by means of sucrose density gradient ultracentrifugation. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity with optimal concentrations of about 30 and 0.7 mM, respectively. The maximal activity seen in the presence of Mg2+, however, was nearly twice as high as that seen in the presence of Co2+. Histones were generally effective substrates for the enzyme, whereas protamine, casein, phosvitin, phosphorylase kinase, and activator protein of phosphodiesterase were not. The cyclic GMP-dependent enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent enzyme in the presence of Mg2+.  相似文献   

17.
An adenosine 3'5'-cyclic-monophosphate (Cyclic AMP)-dependent protein kinase has been identified and partially purified from the rat prostate tumor induced by 20-methylcholanthrene. This enzyme is stimulated 2- to 3-fold by the nucleotide. Equilibrium studies at pH 5.0 suggest the presence of a major class of binding site for cyclic AMP with an association constant of approximately 10(8) M-1. The concentration of binding site is about 1 pmol/mg of protein of the enzyme preparation. The enzyme is stimulated by other cyclic nucleotides as well, but only by higher concentrations. In comparing the ability of different histone subfractions, casein and protamine, to serve as substrate for this particular protein kinase, maximal cyclic-AMP-dependent enzyme activity was observed with histones. The results suggest that factors contributing to the malignant growth of the prostatic tissue do not directly involve changes in the characteristics of a cyclic-AMP-dependent protein kinase.  相似文献   

18.
Tyrosine 3-monooxygenase activity of the crude extract from rat striatum had a sharp pH optimum at pH 5.4 and showed almost no activity at or above pH 7. When the crude extract was partially purified by pH precipitation and chromatography on DEAE-cellulose, the enzyme showed a high activity in the pH range of 5.8 to 7.4. Incubation of the partially purified enzyme with catecholamines such as dopamine, norepinephrine, and epinephrine resulted in a remarkable decrease in the enzyme activity, as assayed at a neutral pH. This suppression of the enzyme activity by catecholamines differed from the well-known feedback inhibition which is competitive with respect to the pterin cofactor; the former occurred at a very much lower concentration of catecholamines even in the presence of a near-saturating concentration of a pterin cofactor, and the former was a time-dependent reaction. The enzyme, the activity of which had been suppressed by the incubation with dopamine, was remarkably activated by the incubation with the catalytic subunit of cyclic AMP-dependent protein kinase in the presence of an ATP-generating system. These results suggest that the activity of tyrosine 3-monooxygenase may be suppressed by its end products in a normal state and it may be stimulated by cyclic AMP-dependent protein kinase as occasion demands.  相似文献   

19.
Protein kinases were separated from rat kidney nuclear extract by hydroxylapatite column chromatography. Five (I-V) different protein kinases were isolated when histone was used as a substrate. Two (I and III) of them stimulated phosphorylation of c-erb A-beta protein (50 kDa) expressed in Escherichia coli. The c-erb A product has an activity of high affinity T3 binding. One (I) of the kinases was dependent on cyclic adenosine 3',5'-monophosphate (cyclic AMP). The other kinase (III) was not dependent on cyclic nucleotides. The latter kinase was eluted from hydroxylapatite column with 0.05 M PO4 at pH 7.4. The sedimentation coefficient(s) estimated by continuous sucrose density gradient centrifugation was approximately 6.0 Km values for ATP were estimated by double reciprocal analyses, which gave 110.0 microM in the protein kinase I (in the presence of 10(-6) M cyclic AMP) and 25 microM in the protein kinase III, respectively. The data showed that 1.0 mol phosphate was incorporated into 80 mol of c-erb A protein (50 kDa) either in the presence of protein kinase I (with 10(-6) M cyclic AMP) or in the presence of protein kinase III. These results suggested that there are protein kinases for c-erb A protein, whose functional properties are similar to those of nuclear T3 receptor, in rat kidney nuclei.  相似文献   

20.
Distribution of adenosine deaminase-complexing protein in murine tissues   总被引:4,自引:0,他引:4  
It has been suggested that mouse and rat lack adenosine deaminase-complexing protein because in these species exclusively the small molecular weight form of adenosine deaminase (ADA-S) is found. This suggestion is based on the assumption that the adenosine deaminase binding capacity is an inherent functional characteristic of adenosine deaminase-complexing protein. We report on the presence of adenosine deaminase-complexing protein immunoreactivity in mouse and rat determined with a species cross-reactive polyclonal anti-adenosine deaminase-complexing protein serum. In the mouse the tissue and subcellular distribution and the electrophoretic mobility in starch and polyacrylamide gels of the protein correspond with those of adenosine deaminase-complexing protein, but it does not bind the small molecular weight form of adenosine deaminase. Furthermore, in human, mouse, and rat kidney cortex adenosine deaminase and adenosine deaminase-complexing protein did not colocalize by immunohistochemistry. It is suggested that the function of adenosine deaminase-complexing protein is not adenosine deaminase-related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号