首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
During placentation, the concentration of fibrinous deposits on the surfaces of maternal vasculature plays a role in villous development and has been strongly implicated in the pathophysiology of human fetal growth restriction (FGR). Fibrinous deposits are conspicuous sites of platelet aggregation where there is local activation of the hemostatic cascade. During activation of the hemostatic cascade, a number of pro- and antiangiogenic agents may be generated at the cell surface, and an imbalance in these factors may contribute to the placental pathology characteristic of FGR. We tested the hypothesis that angiostatin(4.5) (AS(4.5)), a cleavage fragment of plasminogen liberated at the cell surface, is capable of causing FGR in mice. Increased maternal levels of AS(4.5) in vivo result in reproducible placental pathology, including an altered vascular compartment (both in decidual and labyrinthine layers) and increased apoptosis throughout the placenta. In addition, there is significant skeletal growth delay and conspicuous edema in fetuses from mothers that received AS(4.5). Maternally generated AS(4.5), therefore, can access maternal placental vasculature and have a severe effect on placental architecture and inhibit fetal development in vivo. These findings strongly support the hypothesis that maternal AS(4.5) levels can influence placental development, possibly by directly influencing trophoblast turnover in the placenta, and contribute to fetal growth delay in mice.  相似文献   

2.
During normal pregnancy in the mouse, maternal serum levels of the analogues to human schwangerschaftsprotein-1 and alpha-fetoprotein correlate significantly with the growth of the placenta and fetus respectively. This relationship has been utilized in the analysis of the effect of sodium selenite on placental and fetal growth in mice. Moderate doses of sodium selenite did not affect the growth of the placenta and fetus significantly, whereas high doses of selenite resulted in a large percentage of abortions. The protein markers were found to be useful in the prediction of placental and fetal growth, and they are suggested to be of general use in the study of the impact of teratogenic substances, since they reflect the status of the fetoplacental mass during gestation.  相似文献   

3.
BACKGROUND: Methylnitrosourea (MNU) is a potent carcinogen and teratogen that is associated with central nervous system, craniofacial, skeletal, ocular, and appendicular birth defects following transplacental exposure at critical time points during development, and preliminary studies have suggested that nonspecific maternal immunostimulation may offer protection against development of these birth defects. METHODS: Our study examined morphologic alterations in fetal limb and digital development and placental integrity following maternal exposure to MNU on GD 9 in CD-1 mice, and characterized the improvement in placental integrity and abrogation of fetal defects following maternal immune stimulation with interferon-gamma (IFN-gamma) on GD 7. RESULTS: Fetal limbs were significantly shortened (p < 0.0001) and incidence of limb and digital defects (syndactyly, polydactyly, oligodactyly, clubbing, and webbing) was dramatically increased following mid-gestational maternal MNU exposure. Maternal immune stimulation with IFN-gamma on GD 7 lessened incidence of fetal limb shortening and maldevelopment on GD 12 and 14. Further, disruption of placental spongiotrophoblast integrity, increased cell death in placental trophoblasts with increased intercellular spaces in the spongiotrophoblast layer and minimal inflammation, and increased loss of fetal labyrinthine endothelial cells from MNU-exposed dams suggested that MNU-induced placental breakdown may contribute to fetal limb and digital maldevelopment. MNU + IFN-gamma was associated with diminished cell death within all layers of the placenta, especially in the labyrinthine layer. CONCLUSIONS: These data verify improved distal limb development in MNU-exposed mice as a result of maternal IFN-gamma administration, and suggest a link between placental integrity and proper fetal development.  相似文献   

4.
Vitamin D deficiency has been associated with adverse pregnant outcomes. Several studies investigated the effects of maternal vitamin D3 supplementation on fetal development with inconsistent results. The aim of this study was to investigate the effects of maternal supplementation with different doses of vitamin D3 on fetal development. Pregnant mice were administered with different doses of cholecalciferol (0, 2,000, 10,000, 40,000 IU/kg/day) by gavage throughout pregnancy. Fetal weight and crown-rump length were measured. Placental proliferation and mesenchymal characteristics were detected. HTR-8/SVneo cells were incubated in the absence or presence of calcitriol (500 nmol/L) to evaluate the effects of active vitamin D3 on migration and invasion of human trophoblast cells. Although a low dose of cholecalciferol was safe, fetal weight and crown-rump length were decreased in dams treated with high-dose cholecalciferol throughout pregnancy. Placental weight and labyrinth thickness were reduced in mice administered with high-dose cholecalciferol. An obvious calcification was observed in placentae of mice administered with high-dose cholecalciferol. Ki67-positive cells, a marker of placental proliferation, were reduced in mice administered with high-dose cholecalciferol. N-cadherin and vimentin, two mesenchymal markers, were decreased in cholecalciferol-treated mouse placentae and calcitriol-treated human trophoblast cells. MMP-2 and MMP-9, two matrix metalloproteinases, were downregulated in cholecalciferol-treated mouse placentae and calcitriol-treated human trophoblast cells. In addition, trophoblast migration and invasion were suppressed by calcitriol. Supplementation with high-dose cholecalciferol induces fetal growth restriction partially through inhibiting placental proliferation and trophoblast epithelial-mesenchymal transition.  相似文献   

5.
During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT(1a) receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT(1a), and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size (P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT(1a) (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control (P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth (P < 0.05). The increased uterine and amniotic fluid PTHrP (P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT(1a) expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.  相似文献   

6.
Angiogenesis in the placenta   总被引:14,自引:0,他引:14  
The mammalian placenta is the organ through which respiratory gases, nutrients, and wastes are exchanged between the maternal and fetal systems. Thus, transplacental exchange provides for all the metabolic demands of fetal growth and development. The rate of transplacental exchange depends primarily on the rates of uterine (maternal placental) and umbilical (fetal placental) blood flows. In fact, increased uterine vascular resistance and reduced uterine blood flow can be used as predictors of high risk pregnancies and are associated with fetal growth retardation. The rates of placental blood flow, in turn, are dependent on placental vascularization, and placental angiogenesis is therefore critical for the successful development of viable, healthy offspring. Recent studies, including gene knockouts in mice, indicate that the vascular endothelial growth factors represent a major class of placental angiogenic factors. Other angiogenic factors, such as the fibroblast growth factors or perhaps the angiopoietins, also may play important roles in placental vascularization. In addition, recent observations suggest that these angiogenic factors interact with the local vasodilator nitric oxide to coordinate placental angiogenesis and blood flow. In the future, regulators of angiogenesis that are currently being developed may provide novel and powerful methods to ensure positive outcomes for most pregnancies.  相似文献   

7.

Background

Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI.

Methodology/Principal Findings

In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring.

Conclusions

These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher vulnerability to affective disorders in a dose-dependent manner.  相似文献   

8.
9.
Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez−/−) were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis–time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine) and taurine were not affected. Lack of hypotaurine in Ez−/− mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.  相似文献   

10.
Maternal obesity increases placental transport of macronutrients, resulting in fetal overgrowth and obesity later in life. Choline participates in fatty acid metabolism, serves as a methyl donor and influences growth signaling, which may modify placental macronutrient homeostasis and affect fetal growth. Using a mouse model of maternal obesity, we assessed the effect of maternal choline supplementation on preventing fetal overgrowth and restoring placental macronutrient homeostasis. C57BL/6J mice were fed either a high-fat (HF, 60% kcal from fat) diet or a normal (NF, 10% kcal from fat) diet with a drinking supply of either 25 mM choline chloride or control purified water, respectively, beginning 4 weeks prior to mating until gestational day 12.5. Fetal and placental weight, metabolites and gene expression were measured. HF feeding significantly (P<.05) increased placental and fetal weight in the HF-control (HFCO) versus NF-control (NFCO) animals, whereas the HF choline-supplemented (HFCS) group effectively normalized placental and fetal weight to the levels of the NFCO group. Compared to HFCO, the HFCS group had lower (P<.05) glucose transporter 1 and fatty acid transport protein 1 expression as well as lower accumulation of glycogen in the placenta. The HFCS group also had lower (P<.05) placental 4E-binding protein 1 and ribosomal protein s6 phosphorylation, which are indicators of mechanistic target of rapamycin complex 1 activation favoring macronutrient anabolism. In summary, our results suggest that maternal choline supplementation prevented fetal overgrowth in obese mice at midgestation and improved biomarkers of placental macronutrient homeostasis.  相似文献   

11.
The preimplantation embryo is sensitive to its environment and, despite having some plasticity to adapt, environmental perturbations can impair embryo development, metabolic homeostasis, fetal and placental development, and offspring health. This study used an in vitro model of embryo culture with increasing mitochondrial inhibition to directly establish the effect of impaired mitochondrial function on embryonic, fetal, and placental development. Culture in the absence of the carbohydrate pyruvate significantly increased blastocyst glucose oxidation via glycolysis to maintain normal levels of ATP and tricarboxylic acid (TCA) cycle activity. This culture resulted in a significant reduction in blastocyst development, trophectoderm cell number, and respiration rate but, importantly, did not impair implantation rates or fetal and placental development. In contrast, increasing concentrations of the mitochondrial inhibitor amino-oxyacetate (AOA) impaired glycolysis, TCA cycle activity, respiration rate, and ATP production; incrementally reduced blastocyst development; and decreased blastocyst inner cell mass and trophectoderm cell numbers. Importantly, AOA did not affect implantation rates; however, 5 μM AOA significantly reduced placental growth but not fetal growth, increasing the fetal:placental weight ratio. Furthermore, 50 μM AOA significantly reduced both placental and fetal growth but not the fetal:placental weight ratio. Hence, this study demonstrates that a threshold of mitochondrial function is required for normal development, and despite developmental plasticity of the embryo, impaired mitochondrial function in the embryo affects subsequent fetal and placental growth. These results highlight the importance of mitochondrial function in regulating pre- and postimplantation development; however, the effect on offspring health remains unknown.  相似文献   

12.
After the outbreak of acute renal failure associated with melamine‐contaminated pet food, melamine and melamine‐related compounds have become of great interest from a toxicologic perspective. We investigated the potential effects of melamine in combination with cyanuric acid (M + CA, 1:1) on pregnant dams and embryo‐fetal development in rats. M + CA was orally administered to pregnant rats from gestational days 6 through 19 at doses of 0, 3, 10, and 30 mg/kg/day of both melamine and cyanuric acid. Maternal toxicity of rats administered 30 mg/kg/day M + CA was manifested as increased incidences of clinical signs and death; gross pathologic findings; higher blood urea nitrogen and creatinine levels; lower body weight gain and food intake; decreased thymus weight; and increased heart, lung, and kidney weights. Histopathological examinations revealed an increase in the incidence of congestion, tubular necrosis/degeneration, crystals, casts, mineralization, inflammatory cells in tubules, tubular dilation, and atrophy of glomeruli in maternal kidneys, whereas fetal kidneys did not show any histopathological changes. Developmental toxicity included a decrease in fetal (28%) and placental weights and a delay in fetal ossification (n = 7). Increased incidence of gross and histopathological changes in the maternal kidney was also found in the middle dose group (n = 12). No treatment‐related maternal or developmental effects were observed in the low dose group (n = 12). Under these experimental conditions, M + CA is embryotoxic at an overt maternotoxic dose in rats and the no‐observed‐adverse‐effect level of M + CA is considered to be 3 mg/kg/day for pregnant dams and 10 mg/kg/day for embryo‐fetal development.  相似文献   

13.
BACKGROUND: Methylnitrosourea (MNU), an alkylating agent derived from creatinine metabolism, is cytotoxic, genotoxic, and mutagenic. Mid-gestational exposure to MNU leads to distal limb defects in mice. Previous studies have shown that nonspecific maternal immune stimulation protects against MNU-induced teratogenesis. A role for immune-mediated placental improvement in this effect remains uncertain. METHODS: The immune system of timed-pregnant C57BL/6N and CD-1 mice was stimulated by GD 7 intraperitoneal (IP) injection with the cytokine interferon-gamma (IFN-gamma). A teratogenic dose of MNU was then administered by IP injection on the morning of GD 9 to disrupt distal limb formation. Fetal limb length, body length, digital deformities, and placental integrity were evaluated on GD 14. RESULTS: The incidence of syndactyly, polydactyly, and interdigital webbing in MNU-exposed mice was decreased by maternal IFN-gamma treatment. In C57BL/6N mice, these defects were reduced by 47, 100, and 63%, respectively, as compared to previous reports on CD-1 mice, by 39, 71, and 20%, respectively. Administration of IFN-gamma significantly diminished MNU-induced endothelial and trophoblast placental damage in both strains of mice. CONCLUSIONS: These findings support a possible link between maternal immunity, placental integrity, and fetal distal limb development. Further, these results suggest that IFN-gamma might act through placental improvement to indirectly protect against MNU-induced fetal limb malformations.  相似文献   

14.
The placenta is a specialized vascular interface between the maternal and fetal circulations that increases in size to accommodate the nutritional and metabolic demands of the growing fetus. Vascular proliferation and expansion are critical components of placental development and, consequently, interference with vascular growth has the potential to severely restrict concurrent development of both the placenta and fetus. In this study, we describe the effects of an antiangiogenic agent, TNP-470, on placental vascular development and the induction of a form of intrauterine growth restriction (IUGR) in mice. Administration of TNP-470 to dams in the second half of pregnancy resulted in a smaller maternal weight gain accompanied by decreased placental and fetal sizes in comparison with control animals. Total numbers of fetuses per litter were not affected significantly. Stereological analysis of placentas revealed no changes in the combined lengths of vessels. However, the mean cross-sectional areas of maternal and fetal vessels in the labyrinth of TNP-470-treated mice were reduced at Embryonic Day 13.5 (E13.5) but not at E18.5. Further analysis showed reduced placental endothelial proliferation at E13.5 and E18.5 in TNP-470-treated animals. No other structural or morphometric differences in placentas were detected between TNP-470-treated and control mice at E18.5. This study provides conclusive evidence that administration of TNP-470 interferes with placental vascular proliferation and vessel caliber and results in a reproducible model of IUGR.  相似文献   

15.
During depopulation of a breeding unit within Swine Graphics Enterprises, extensive data were collected and used to examine relationships among ovulation rate, the pattern of prenatal loss, and placental and fetal development. Groups of Large White x Landrace females (n=447) were slaughtered between day 20-30, 50-55 or 85-90 of gestation, with approximately equal numbers of animals representing gilts and parity 1 (G/P1), parity 2-3 (P2/3), and parity >4 (P4+). Ovulation rate and embryo number were recorded for all animals. With the exception of the G/P1 animals, embryonic and placental weight were recorded for four conceptuses per sow on day 20-30; on day 85-90 two conceptuses per sow were dissected to determine placental and fetal development. Ovulation rate (22.7 +/- 0.2 overall) was higher (P <0.05) in P2/3 (23.6 +/- 0.4) and P4+ (24.7 +/- 0.4) than in G/P1 (20.2 +/- 0.5). Embryonic/fetal survival was 61.8 +/- 2.1% at day 20-30, 50.2 +/- 2.2% at day 50-55 and 48.7 +/- 1.9% at day 85-90 and the number of surviving conceptuses was higher (P <0.05) in the P2/3 sows than in other parity groups. There was no relationship between ovulation rate and number of live embryos at day 20-30 or 85-90. At day 20-30 and 85-90, embryo weight was positively correlated with placental weight, but neither placental weight nor embryonic/fetal weight was correlated with number of viable embryos. A parity by gestation day interaction existed; placental weight for P4+ (3.42 +/- 0.43 g) was less than for P2/3 (7.55 +/- 0.40 g) at day 20-30 (P <0.0001), whereas at day 85-90, placental weight of P2/3 (209.5 +/- 8.5 g) was less (P=0.05) than both G/P1 (235.7 +/- 7.3g) and P4+ (235.4 +/- 7.1 g). At day 85-90, fetal brain weight, relative to body weight (R2=0.61, P <0.0001), and fetal brain:liver weight ratio (R2=0.35; P <0.0001) were negatively related to mean fetal weight, and brain:liver weight ratio showed a trend towards a relationship with number of viable fetuses (P=0.08). Parity also affected brain:liver weight ratio (P=0.01). Clearly, high ovulation rates in the higher parity sows have the potential to cause excessive in utero crowding of conceptuses in the post-implantation period. Even with moderate crowding, increased brain:liver weight ratios in smaller fetuses in late gestation indicate that uterine capacity impacts fetal development as well as the number of surviving fetuses.  相似文献   

16.
The sequestration of infected erythrocytes in the placenta can activate the syncytiotrophoblast to release cytokines that affect the micro-environment and influence the delivery of nutrients and oxygen to fetus. The high level of IL-10 has been reported in the intervillous space and could prevent the pathological effects. There is still no data of Th17 involvement in the pathogenesis of placental malaria. This study was conducted to reveal the influence of placental IL-17 and IL-10 levels on fetal weights in malaria placenta. Seventeen pregnant BALB/C mice were divided into control (8 pregnant mice) and treatment group (9 pregnant mice infected by Plasmodium berghei). Placental specimens stained with hematoxylin and eosin were examined to determine the level of cytoadherence by counting the infected erythrocytes in the intervillous space of placenta. Levels of IL-17 and IL-10 in the placenta were measured using ELISA. All fetuses were weighed by analytical balance. Statistical analysis using Structural Equation Modeling showed that cytoadherence caused an increased level of placental IL-17 and a decreased level of placental IL-10. Cytoadherence also caused low fetal weight. The increased level of placental IL-17 caused low fetal weight, and interestingly low fetal weight was caused by a decrease of placental IL-10. It can be concluded that low fetal weight in placental malaria is directly caused by sequestration of the parasites and indirectly by the local imbalance of IL-17 and IL-10 levels.  相似文献   

17.
Involvement of gap junctions in placental functions and development   总被引:3,自引:0,他引:3  
Connexin (Cx) expression and gap junctional intercellular communication (GJIC) are involved in development and differentiation processes. Mediating exchanges between mother and fetus, the placenta is formed when fetal membranes are apposed or even fusing or destroying the uterine mucosa. Therefore, an extraordinary variability of placental structures is observed throughout the mammalian species. This variability affect mainly, the maternofetal blood flow interrelationships, the kind and number of tissue layers separating maternal and fetal bloods, the trophoblast invasiveness and the formation of a syncytium (syncytiotrophoblast). Here, the expression, the localisation and the possible role of Cx and GJIC in placental functions and development are discussed. In rodents, gene knock out in mice have vastly improved our understanding of the role of Cx genes in mouse placental development: Cx26 in transplacental uptake of glucose, Cx31 in the proliferative process of trophoblastic cells and Cx45 in placental vascularisation. In human, it appears that Cx43 allows a GJIC required for the fusion process of cytotrophoblastic cells leading to the formation of the syncytiotrophoblast, the site of the numerous placental functions. On other hands, Cx40 plays a critical role in the switch from a proliferative to an invasive phenotype of the trophoblastic cells invading the endometrium. Owing to the striking diversity of Cx expression in placental structures, we must be careful when extrapolating findings from one species to another.  相似文献   

18.
During gestation, sex steroids could potentially have detrimental effects on fetal development. At least two distinct mechanisms should prevent such effects. The 17beta-hydroxysteroid dehydrogenase-2 (HSD17beta2) plays a key role in each mechanism. Being expressed both in lung fibroblasts and placental endothelial cells, the HSD17beta2 should restrict testosterone and estradiol actions, thus enabling normal development.  相似文献   

19.
BACKGROUND: VLA‐4 (Very late antigen 4, integrin α4β1) plays an important role in cell‐cell interactions that are critical for development. Homozygous null knockouts of the α4subunit of VLA‐4 or VCAM‐1 (cell surface ligand to VLA‐4) in mice result in abnormal placental and cardiac development and embryo lethality. Objectives of the current study were to assess and compare the teratogenic potential of three VLA‐4 antagonists. METHODS: IVL745, HMR1031, and IVL984 were each evaluated by the subcutaneous route in standard embryo‐fetal developmental toxicity studies in rats and rabbits. IVL984 was also evaluated in mice. Fetuses were examined externally, viscerally, and skeletally. RESULTS: IVL745 did not cause significant maternal or fetal effects at doses up to 100 or 250 mg/kg/day in rats or rabbits, respectively. HMR1031 treatment resulted in marked maternal toxicity and slight fetal toxicity at the highest tested doses of 200 and 75 mg/kg/day in rats and rabbits, respectively. HMR1031 embryo‐fetal effects consisted of slightly lower body weight and crown‐rump length in rats and minor sternebral defects in rabbits. IVL984 treatment resulted in minimal maternal effects at doses up to 40, 15, and 100 mg/kg/day in rats, rabbits, and mice, respectively (excluding abortions in rabbits). However, marked developmental effects were observed at the lowest tested IVL984 doses, 1, 0.2, and 3 mg/kg/day in rats, rabbits, and mice, respectively. IVL984 embryo‐fetal effects consisted of increased total post‐implantation loss due to early resorptions and high incidences of cardiac malformations and skeletal malformations and/or variations. Notably, spiral septal defects were observed in up to 76% of rat fetuses and up to 58% of rabbit fetuses. CONCLUSIONS: Dramatic differences in teratogenic potential were observed: IVL745 was not teratogenic, HMR1031 caused slight embryo‐fetal effects at maternally‐toxic doses, and IVL984 was a potent teratogen at doses where direct maternal toxicity was limited to abortions in rabbits. Prominent effects of IVL984 included embryo lethality and cardiac malformations including spiral septal defects in three species. Birth Defects Res B 71:55–68, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号