首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

2.
The catabolic system, translocating then beta-oxidizing fatty acids in the mitochondria and considered as the major energy generator in the heart, was shown in the present study to be strongly regulated by fatty acid-binding protein (FABP), a self-aggregated and exclusive protein for the binding and transport of fatty acids in the cardiac cell cytoplasm. The mechanism behind this regulation was investigated by using new techniques in this field: i.e. electron spin resonance (ESR) and spin-labeling for the simultaneous analysis of partitioning and beta-oxidation of fatty acids in the isolated cardiac mitochondria. The step of this catabolic system which is controlled by FABP was shown to be the acylcarnitine transfer into the mitochondria. Two of the multi-self-aggregated FABP molecular species, namely those existing at FABP concentrations around 1.1 and 2.2 g.liter-1, were found to act as specific translocators delivering acylcarnitine to the mitochondrial beta-oxidative system. The energy production in the heart might thus be critically dependent on optimized FABP concentrations in the cardiac cells.  相似文献   

3.
Rat liver fatty acid-binding protein (FABP) can function as a fatty acid donor protein for both peroxisomal and mitochondrial fatty acid oxidation, since 14C-labeled palmitic acid bound to FABP is oxidized by both organelles. FABP is, however, not detected in peroxisomes and mitochondria of rat liver by ELISA. Acyl-CoA oxidase activity of isolated peroxisomes was not changed by addition of FABP or flavaspidic acid, an inhibitor of fatty acid binding to FABP, nor by disruption of the peroxisomal membranes. These data indicate that FABP may transfer fatty acids to peroxisomes, but is not involved in the transport of acyl-CoA through the peroxisomal membrane.  相似文献   

4.
Fatty acid binding proteins from heart   总被引:4,自引:0,他引:4  
Heart contains a fatty acid binding protein (FABP) concentration comparable to liver, when it is determined with a fatty acid-binding assay. The low concentration detected with anti-liver FABP antibodies is related to the different chemical forms and physiochemical properties of liver and heart FABP. The ratio of fatty acid bound per purified protein molecule is one or lower. Rat heart mitochondria oxidize FABP-bound fatty acids. The FABP content of rat heart is dependent on sex and diurnal cycle, but is not influenced by starvation or clofibrate feeding. It is also not different in the newborn rat. FABP was obtained from human heart in a yield of 11%. It shows similar binding characteristics to palmitic, oleic and arachidonic acid. The functional significance of the specific heart FABP is discussed in relation to myocardial fatty acid metabolism in normal and pathological conditions.  相似文献   

5.
Defatted liver fatty acid binding protein (FABP) reverses the inhibitory effect of palmitoyl-CoA on adenine nucleotide transport in rat liver mitochondria; addition of titrating amounts of FABP to mitochondria pretreated with palmitoyl-CoA stimulates nucleotide transport and that activation parallels the removal of the inhibitor from mitochondria. This effect is specific only for FABP; all other cytosolic proteins which do not bind fatty acids do not influence nucleotide transport activity. Addition of free fatty acids (which can compete for ligand binding sites on FABP) to mitochondria pretreated with palmitoyl-CoA interferes with the reversal activity of FABP. Adding FABP alone to freshly isolated mitochondria also activates nucleotide transport activity suggesting that the originally submaximal activity is probably due to the presence of endogenous long-chain acyl-CoA esters in the mitochondrial preparation. Because FABP is present in relatively high concentration in most mammalian cells, these observations offer a likely explanation of why the potent inhibitory effects of long-chain acyl-CoA esters on adenine nucleotide transport in isolated mitochondria are not seen in the intact cell.  相似文献   

6.
A fatty-acid-binding protein with a molecular weight of approximately 12 000 was purified from rat heart and the binding investigated by electron spin resonance. The stearic acid bound to the protein was found to be transferred to the mitochondrial beta-oxidative system, suggesting a role as transcytoplasmic fatty acid carrier for this protein. For the first time a physiological cytoplasmic protein was used as a carrier supplying the mitochondrial beta-oxidative system. A new mechanism of action is proposed to explain the control exerted by this type of protein in some membrane-linked enzymatic processes.  相似文献   

7.
Several types of the 14-15 kDa fatty acid-binding proteins (FABPs) are known to occur in the cytosol of mammalian cells. With antibodies raised against the cardiac-type protein from bovine heart, immunoblots indicated a more widespread distribution of the cardiac FABP in subcellular fractions, such as mitochondria and nuclei. A detailed view was obtained when the post-embedding protein A-gold labeling method was applied to cross-sections of heart cells and isolated subcellular fractions. Cardiac FABP in myocytes was associated with myofibrils and localized within mitochondria and nuclei. After subfractionation of mitochondria, the binding protein was recovered with matrix proteins only. A non-competitive enzyme-linked immunosorbent assay (ELISA) of the direct type was developed specifically for bovine cardiac FABP. This assay was sensitive in the range of 0.05 to 1 ng, and concentrations of cardiac FABP per mg protein were found for cytosol, matrix and nuclei to be around 3.18, 0.18 and 0.03 micrograms, respectively. The newly found compartmentation of cardiac FABP in the heart cell must be considered when the true functions of the protein, yet to be defined, are studied.  相似文献   

8.
Liposomes of different charge fixed to nitrocellulose filters were used to study the transfer of fatty acids to rat heart or liver mitochondria in the presence of fatty acid-binding protein (FABP) or albumin. [14C]Palmitate oxidation was used as a parameter. Different FABP types and heart FABP mutants were tested. The charge of the liposomes did not influence the solubilization and mitochondrial oxidation of palmitate without FABP and the amount of solubilized palmitate in the presence of FABP. Mitochondria did not show a preference for oxidation of FABP-bound palmitate over their tissue-specific FABP type. All FABP types increased palmitate oxidation by heart and liver mitochondria with neutral, positive and negative liposomes by 2.5-fold, 3.2-fold and twofold, respectively. Ileal lipid-binding protein and H-FABP mutants that do not bind fatty acid had no effect. Other H-FABP mutants had different effects, dependent on the site of mutation. The effect of albumin was similar to, but not dependent on, liposome charge. The ionic strength had only a slight effect. In conclusion, the transfer of palmitate from liposomal membranes to mitochondria was increased by all FABP types to a similar extent. The membrane charge had a large effect in contrast to the origin of the mitochondria.  相似文献   

9.
Fatty acid binding proteins (FABPs) are low-molecular-mass, soluble, intracellular lipid carriers. Previous studies on adipocytes from adipocyte fatty acid binding protein (A-FABP)-deficient mice have revealed that both basal and isoproterenol-stimulated lipolysis were markedly reduced (Coe et al. 1999. J. Lipid Res. 40: 967-972). Herein, we report the construction of transgenic mice overexpressing the FABP5 gene encoding the epithelial fatty acid binding protein (E-FABP) in adipocytes, thereby allowing evaluation of the effects on lipolysis of increased FABP levels and of type specificity. In adipocytes from FABP5 transgenic mice, the total FABP protein level in the adipocyte was increased to 150% as compared to the wild type due to a 10-fold increase in the level of E-FABP and an unanticipated 2-fold down-regulation of the A-FABP. There were no significant differences in body weight, serum FFA, or fat pad mass between wild-type and FABP5 transgenic mice. Importantly, both basal and hormone-stimulated lipolysis increased in adipocytes from the FABP5 transgenic animals. The molecular composition of the fatty acid pool from either the intracellular compartment or that effluxed from the adipocyte was unaltered. These results demonstrate that there is a positive relationship between lipolysis and the total level of FABP but not between lipolysis and a specific FABP type.  相似文献   

10.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

11.
Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2.  相似文献   

12.
Summary The possible property of fatty acid-binding proteins (FABPs) to transport fatty acid was investigated in various model systems with FABP preparations from liver and heart. An effect of FABP, however, was not detectable with a combination of oleic acid-loaded mitochondria and vesicles or liposomes due to the rapid spontaneous transfer. Therefore, the mitochondria were separated from the vesicles in an equilibrium dialysis cell. The spontaneous fatty acid transfer was much lower and addition of FABP resulted in an increase of fatty acid transport. Oleic acid was withdrawn from different types of monolayers by FABP with rates up to 10%/min. When two separate monolayers were used, FABP increased fatty acid transfer between these monolayers and an equilibrium was reached.Abbreviations FABP(s) fatty acid-binding protein(s) - PC phosphatidylcholine - PS phosphatidylserine - PE phosphatidylethanolamine  相似文献   

13.
Calcium efflux from isolated mitochondria on ruthenium red addition was shown to be biphasic. The rate of efflux from a slowly releasable pool was independent of preincubation. It could be saturated and in extrapolation revealed a maximal rate of 3.6 nmol/(min X mg protein). The efflux from a second, rapidly dischargeable pool was related to calcium added up to 300 nmol/mg protein when a final rate of 15 nmol/(min X mg protein) was reached. The magnitude of the latter pool depended on the time of preincubation in the presence of calcium and correlated with mitochondrial swelling. After ruthenium red addition, a further increase of this pool and spontaneous, destructive calcium release was prevented. Three conclusions are drawn from these results: On preincubation with calcium, part of the mitochondrial calcium develops into a rapidly dischargeable pool. This pool is responsible for mitochondrial alterations resulting in a spontaneous, destructive release of total calcium. Ruthenium red inhibits calcium release by discharging mitochondria from this destructive calcium pool. To avoid artefacts, mitochondrial parameters should be carefully controlled when ruthenium red-insensitive calcium efflux is studied.  相似文献   

14.
15.
High-affinity, Na+-dependent synaptosomal amino acid uptake systems are strongly stimulated by proteins which are known to bind fatty acids, including the Mr 12 000 fatty acid binding protein (FABP) from liver. To explore the possibility that such a function might be served by fatty acid binding proteins intrinsic to brain, we examined the 105000g supernatant of brain for fatty acid binding. Observed binding was accounted for mainly by components excluded by Sephadex G-50, and to a small degree by the Mr 12 000 protein fraction (brain FABP fraction). The partially purified brain FABP fraction contained a protein immunologically identical with liver FABP as well as a FABP electrophoretically distinct from liver FABP. Brain FABP fraction markedly stimulated synaptosomal Na+-dependent, but not Na+-independent, amino acid uptake, and also completely reversed the inhibition of synaptosomal Na+-dependent amino acid uptake induced by oleic acid. Palmitic, stearic, and oleic acids were endogenously associated with the brain FABP fraction. These data are consistent with the hypothesis that Mr 12 000 soluble FABPs intrinsic to brain may act as regulators of synaptosomal Na+-dependent amino acid uptake by sequestering free fatty acids which inhibit this process.  相似文献   

16.
We designed a series of pyrazole-based carboxylic acids as candidate ligands of heart fatty acid binding protein (H-FABP, or FABP3), based on a comparison of the X-ray crystallographic structures of adipocyte fatty acid binding protein (FABP4)–selective inhibitor (BMS309403) complex and FABP3–elaidic acid complex. Some of the synthesized compounds exhibited dual FABP3/4 ligand activity, and some exhibited selectivity for FABP3.  相似文献   

17.
Fatty acid binding protein 3 (FABP3) (also known as H-FABP) is a member of the intracellular lipid-binding protein family, and is mainly expressed in cardiac muscle tissue. The in vivo function of FABP3 is proposed to be in fatty acid metabolism, trafficking, and cell signaling. Our previous study found that FABP3 is highly regulated in patients with ventricular septal defect (VSD), and may play a significant role in the development of human VSD. In the present study, we aimed to investigate the impact of FABP3 knockdown by RNA interference (RNAi) on apoptosis and mitochondrial function of embryonic carcinoma (P19) cells. The results revealed that downregulated FABP3 expression promoted apoptosis, and resulted in mitochondrial deformation, increased mitochondrial membrane potential (MMP), and decreased intracellular ATP synthesis. In addition, the knockdown of FABP3 also led to excess intracellular ROS production. However, there was no obvious influence on the amount of mitochondrial DNA. Collectively, our results indicated that FABP3 knockdown promoted apoptosis and caused mitochondrial dysfunction in P19 cells, which might be responsible for the development of human VSD.  相似文献   

18.
Summary Heart tissue contains appreciable amounts of fatty acid-binding protein (FABP). FABP is thought to play a crucial role in the transport of fatty acids from the cellular membrane to the intracellular site of oxidation and also, in case of endothelial cells, in the transfer of fatty acids from the vascular to the interstitial compartment through the endothelial cytoplasm. The present study was designed to delineate a possible quantitative relationship between the capacity of different cell types in the heart to oxidize fatty acids and the presence of FABP. Palmitate oxidation capacity, measured in homogenates of cells isolated from adult rat hearts, was 2 nmol/min per mg tissue protein in freshly isolated cardiomyocytes (CMC), but only 0.09 and 0.31 nmol/min per mg tissue protein in cultivated endothelial (CEC) and fibroblast-like cells (CFLC), respectively. Palmitate oxidation rates were closely related to the cytochrome C oxidase activity and, hence, to the mitochondrial density in the cells under investigation. In CMC the content of cytosolic H-FABP (H-FABPc) was about 4.51 µg/mg tissue protein. However, in CEC and CFLC the FABP content was less than 0.01 and 0.004 µg/mg tissue protein, respectively, corresponding to at maximum 0.2% of the FABP content of CMC. These findings indicate a marked difference between CMC and non-myocytal cells in the heart regarding their capacity to oxidize fatty acids, and a marked disproportion between the fatty acid oxidation capacity and immunochemically determined FABP content in both CEC and CFLC. The functional implication of these observations remains to be elucidated.  相似文献   

19.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

20.
Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号