首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have grown polarized epithelial Madin-Darby canine kidney II (MDCK II) cells on filters in the presence of [(35)S]sulfate, [(3)H]glucosamine, or [(35)S]cysteine/[(35)S]methionine to study proteoglycan (PG) synthesis, sorting, and secretion to the apical and basolateral media. Whereas most of the [(35)S]sulfate label was recovered in basolateral PGs, the [(3)H]glucosamine label was predominantly incorporated into the glycosaminoglycan chains of apical PGs, indicating that basolateral PGs are more intensely sulfated than their apical counterparts. Expression of the PG serglycin with a green fluorescent protein tag (SG-GFP) in MDCK II cells produced a protein core secreted 85% apically, which was largely modified by chondroitin sulfate chains. Surprisingly, the 15% of secreted SG-GFP molecules recovered basolaterally were more heavily sulfated and displayed a different sulfation pattern than the apical counterpart. More detailed studies of the differential modification of apically and basolaterally secreted SG-GFP indicate that the protein cores have been designated to apical and basolateral transport platforms before pathway-specific, post-translational modifications have been completed.  相似文献   

2.
Primary cultures of rat hepatocytes maintained on different matrix proteins such as collagen (Co IV) fibronectin (Fn), Laminin (Ln) or different tissue biomatrices were metabolically labelled with 35[S]-SO4 and the synthesis of sulphated proteoglycans was studied. The incorporation of the label into total glycosaminoglycan (GAG) was significantly higher in cells maintained on Co IV compared to those maintained on Fn or Ln. Similarly the incorporation of label was maximum in those cells maintained on the aortic biomatrix compared to liver or mammary gland biomatrix. About 80–95% of the GAG synthesised and secreted by cells maintained on individual matrix proteins and liver biomatrix was heparan sulphate (HS). But in the case of cells maintained on collagen IV aortic or mammary biomatrix in addition to HS, significant amount of chondroitin sulphate (CS) was also found. Nearly 50% of the total 35[S]-GAG was associated with the cell layer after 24 h in culture in the case of cells maintained on individual matrix protein while those maintained on tissue biomatrix, retained about 70% of the 35[S]-labelled proteoglycans (PG) with the cell layer. Analysis of the cell surface 35[S]-labelled proteoglycans isolated from cells maintained on different biomatrix showed that it is a hybrid proteoglycan consisting of CS and HS. While the PG isolated from cells maintained on liver biomatrix consists of HS and CS in the ratio of 3:2 that from cells maintained on aorta or mammary gland matrix was about 2:3 indicating an alteration in the nature of the cell surface PGs produced by cells maintained on different tissue biomatrix. These results indicate that depending on the nature of the matrix substratum with which the cells are in contact, the nature and quantity of sulphated proteoglycans produced by hepatocytes vary.  相似文献   

3.
《The Journal of cell biology》1988,107(6):2409-2423
The present study describes a culture environment in which luminal epithelial cells isolated from immature rat uteri and cultured on a matrix-coated permeable surface, with separate apical and basal secretory compartments, proliferate to confluence. Subsequently the cells undergo a process of differentiation accompanied by progressive development of functional polarity. Ultrastructural and immunocytochemical evidence verifies the ability of these primary cultures to regain polar organization, separate membrane domains, and form functional tight junctions as demonstrated by the development of transepithelial resistance. The appearance of uvomorulin is restricted to the lateral cell surface. Coordinated indices of functional polarity that develop progressively in post-confluent cultures include the preferential uptake of [35S]methionine from the basal surface and a rise in uterine epithelial cell secretory activity characterized by a progressive preference for apical secretion. The time dependent development of polarity was characterized by differences in the protein profiles of the apical and basolateral secretory compartments. The maintenance of hormone responsiveness by the cultured cells was validated by the secretion of two proteins identified as secretory markers of estrogen response in the intact uterus. The technique of culturing the cells on a matrix-coated permeable surface with separate secretory compartments produces a uterine epithelial cell that morphologically and functionally resembles its in situ equivalent. The culture method and analytical approach used in this present study may be applied to primary cultures of a variety of natural epithelia, which have hitherto proven resistant to more conventional culture methodologies.  相似文献   

4.
Secretion of a foreign protein--chicken oviduct lysozyme--and of endogenous proteins was studied in the polarized epithelial Madin-Darby Canine Kidney (MDCK) cell line. Cell clones that secrete enzymatically active chicken lysozyme were generated by transforming the cells with lysozyme cDNA inserted in a SV40-pBR322 recombinant vector and a dominant selectable marker gene. The kinetics and polarity of lysozyme secretion from one transformed cell clone were studied using cell monolayers grown on nitrocellulose filters. Lysozyme was secreted into the apical and the basolateral medium, demonstrating the existence of direct transport pathways to each cell surface. Control experiments excluded the effects of monolayer leakiness, reabsorption, transepithelial transport, and depolarization. In contrast, the secretion of a set of endogenous proteins of MW 30-40 kd was found to be strictly apical showing that polarized secretion also occurs in this cell line. The latter group of proteins appear to be generated from larger precursor molecules by intracellular cleavage.  相似文献   

5.
The objective of the present study was to examine the expression of Toll-like receptors (TLRs) by mouse uterine epithelial cells and to determine if stimulation of the expressed TLR induces changes in cytokine and/or chemokine secretion. Using RT-PCR, the expression of TLRs 1-6 by mouse uterine epithelial cells was demonstrated, with TLRs 7-9 expressed only periodically. In the absence of pathogen-associated molecular patterns, polarized uterine epithelial cells constitutively secrete interleukin (IL) 1A, cysteine-cysteine ligand (CCL) 2, IL6, granulocyte-macrophage colony-stimulating factor 2 (CSF2), tumor necrosis factor A (TNFA), CSF3, and IL8 in vitro, with levels of cytokines/chemokines secreted into the apical compartment being significantly greater than those released into the basolateral compartment. When added to the apical surface for 48 h before analysis, the TLR2-agonist Pam3Cys-Ser-(Lys)4 and TLR1/6-agonist peptidoglycan increased epithelial cell apical secretion of IL1A, CCL2, and IL6 and apical/basolateral bidirectional secretion of CSF2, TNFA, CSF3, and IL8 when compared to controls. The TLR3-agonist poly (I:C) significantly increased bidirectional secretion of CCL2, IL6, TNFA, and CSF2 and basolateral secretion of CSF3. Lastly, the TLR4-agonist lipopolysaccharide increased bidirectional secretion CCL2, CSF2, TNFA, CSF3, and IL8 and apical secretion of IL6. These results indicate that mRNAs for Tlr1 through Tlr6 are expressed by uterine epithelial cells and that treatment with specific TLR agonists alters the expression of key chemokines and proinflammatory cytokines that contribute to the defense of the uterus against potential pathogens.  相似文献   

6.
An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrix-ensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar-like multicellular architecture. This culture system is unique among models of epithelial cell polarity in that it demonstrates several aspects of epithelial cell polarization: vectorial secretion, apical junctions, a sequestered compartment and formation of a basal lamina. These lumina-containing structures therefore reproduce the dual role of mammary epithelia to secrete vectorially and to sequester milk proteins. Thus, in addition to maintaining tissue-specific cytodifferentiation and function, a basement membrane promotes the expression of tissue-like morphogenesis.  相似文献   

7.
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a “sorting escort” (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as “sorting escorts” to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells. David V. Cohn—Deceased.  相似文献   

8.
Confluent monolayers of MDCK (Madin-Darby canine kidney) cells provide a widely used model system for studying epithelial cell polarity. We determined the polarity of epithelial cell plasma membrane glycolipids and sulfated lipids by analyzing the lipids released from both sides of monolayers of metabolically labeled MDCK cells. These lipids were released either as endogenously shed material or in budding viruses. All of the glycolipids were detected in both the apical and basolateral domains of the plasma membrane. However, galactosylceramide was more basally oriented than any of the other glycolipids; thus, the ratio of glucosylceramide to galactosylceramide was more than twice as great in the apical domain as in the basolateral domain. A sulfated sterol, which comigrated with cholesterol sulfate, was released in a more basally polarized manner than any of the glycolipids. These results indicate the presence of mechanisms which can produce different degrees of polarity for specific lipids in polarized epithelial cells.  相似文献   

9.
K C Kim  B N Singh 《Biorheology》1990,27(3-4):491-501
Confluent cultures of hamster tracheal surface epithelial (HTSE) cells are highly enriched with secretory cells and secrete mucins. Ultrastructural studies of cellular localization of these mucins show that mucins are found not only inside secretory granules but also on the apical surface of secretory cells during active secretion, and secreted mucins are highly associated with lipids. In the present communication, we analyzed lipids associated with both cellular and secreted mucins following metabolic radiolabeling of these cultured cells with [3H]palmitic acid. We found that profiles of lipids associated with both cellular and secreted mucins are almost identical not only qualitatively but also quantitatively. It is concluded that the lipid association with mucins seems to take place before secretion. The origin of the cell surface-bound mucins is discussed.  相似文献   

10.
Vuong TT  Prydz K  Tveit H 《Glycobiology》2006,16(4):326-332
Serglycin with a green fluorescent protein tag (SG-GFP) expressed in epithelial Madin-Darby canine kidney cells is secreted mainly (85%) into the apical medium, but the glycosaminoglycan (GAG) chains on the SG-GFP protein core secreted basolaterally (15%) carry most of the sulfate added during biosynthesis (Tveit et al. (2005) J. Biol. Chem., 280, 29596-29603). Here we report further differences in apical and basolateral GAG synthesis. The less intensely sulfated chondroitin sulfate (CS) chains on apically secreted SG-GFP are longer than CS chains attached to basolateral SG-GFP, whereas the heparan sulfate (HS) chains are of similar lengths. When the supply of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is limited by chlorate treatment, the synthesis machinery maintains sulfation of HS chains on basolateral SG-GFP until it is inhibited at 50 mM chlorate, whereas basolateral CS chains lose sulfate already at 12.5 mM chlorate and become longer. Apically, incorporation of 35S-sulfate into CS is reduced to a lesser extent at higher chlorate concentrations than basolateral CS, although apical CS is less intensely sulfated than basolateral CS in control cells. Similar to what was found for basolateral HS, sulfation of apical HS was not reduced at chlorate concentrations below 50 mM. Also, protein-free, xyloside-based GAG chains secreted basolaterally are more intensely sulfated than their apical counterpart, supporting the view that separate apical and basolateral pathways exist for GAG synthesis and sulfation. Introduction of benzyl beta-d-xyloside (BX) to the GAG synthesis machinery reduces the apical secretion of SG-GFP dramatically and also the modification of SG-GFP by HS.  相似文献   

11.
Epithelial cells can secrete specific proteins in a polarized manner, either from the apical or basolateral surface. Intracellular protein sorting which results in polarized secretion has previously been studied using epithelial tissue culture cells. We describe here the use of Drosophila larval salivary glands for the study of polarized secretion by epithelia in vivo, and address whether an ectopically synthesized secretory protein can be sorted and targeted to the correct cell surface for secretion. Larval cuticle proteins (LCPs) and salivary gland secretion (Sgs) proteins of Drosophila melanogaster are apically secreted proteins that are produced respectively by the epidermis and salivary glands. We have transformed Drosophila with a hybrid gene consisting of the sgs-4 promoter sequence and the coding sequence for a variant (LCP-f2) of LCP-2. We have found that transgenic late third instar larvae produce LCP-f2 only in the salivary glands and that LCP-f2 is properly secreted in vivo in a polarized manner from only the apical surface of the cells into the gland lumen. The results indicate that apical secretion does not depend on a tissue-specific targeting signal contained within the protein.  相似文献   

12.
Bovine chromogranin A (CgA), together with secreted alkaline phosphatase (SEAP) as an external control for apical secretion were expressed in MDCK cells to test if CgA contains sorting signals for polarized secretion. CgA, SEAP, and the endogenous apical marker GP80 were secreted 75-80% apically. Basolateral secretion of SEAP was inhibited 40% by ammonium chloride. Sulfate labeling and digestion with chondroitinase ABC revealed a 120 kDa proteoglycan-CgA and 75 kDa CgA. Inhibition of proteoglycan synthesis did not affect apical secretion of CgA. As CgA is not N-glycosylated, we used tunicamycin to test if cellular N-glycosylation is required for apical sorting. Tunicamycin reversed the polarity of secretion of CgA to the basolateral side. These results suggest that CgA contains dominant apical and recessive basolateral sorting information.  相似文献   

13.
The proteoglycan serglycin (SG) fused to green fluorescent protein (GFP) is secreted predominantly from the apical surface of polarized epithelial Madin-Darby canine kidney (MDCK) cell monolayers, but the minor fraction secreted basolaterally carries more intensely sulfated glycosaminoglycan (GAG) chains (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem 280: 29596-29603). To investigate whether the domain with GAG attachment sites in SG (i) is sufficient to drive apical protein sorting and (ii) independently generates the sulfation differences observed in the apical and basolateral pathways, the GAG domain of SG was fused into the junction of rat growth hormone (rGH) and GFP and expressed in MDCK cells, either with or without two N-glycosylation sites in the rGH part. Both variants acquired chondroitin sulfate GAG chains and were secreted predominantly to the apical medium, to the same extent as rGH-GFP with two N-glycosylation sites only, and different from the nonsorted variant lacking glycosylation sites. Transfer of the GAG attachment domain from SG to the new rGH context abolished the differences in sulfation intensity and positions observed for SG in the apical and basolateral secretory routes. Thus, these differences are coded by elements outside the GAG attachment domain.  相似文献   

14.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

15.
《The Journal of cell biology》1993,121(5):1031-1039
Glycosylphosphatidylinositol (GPI) acts as an apical targeting signal in MDCK cells and other kidney and intestinal cell lines. In striking contrast with these model polarized cell lines, we show here that Fischer rat thyroid (FRT) epithelial cells do not display a preferential apical distribution of GPI-anchored proteins. Six out of nine detectable endogenous GPI-anchored proteins were localized on the basolateral surface, whereas two others were apical and one was not polarized. Transfection of several model GPI proteins, previously shown to be apically targeted in MDCK cells, also led to unexpected results. While the ectodomain of decay accelerating factor (DAF) was apically secreted, 50% of the native, GPI-anchored form, of this protein was basolateral. Addition of a GPI anchor to the ectodomain of Herpes simplex gD-1, secreted without polarity, led to basolateral localization of the fusion protein, gD1-DAF. Targeting experiments demonstrated that gD1-DAF was delivered vectorially from the Golgi apparatus to the basolateral surface. These results indicate that FRT cells have fundamental differences with MDCK cells with regard to the mechanisms for sorting GPI-anchored proteins: GPI is not an apical signal but, rather, it behaves as a basolateral signal. The "mutant" behavior of FRT cells may provide clues to the nature of the mechanisms that sort GPI-anchored proteins in epithelial cells.  相似文献   

16.
Polar secretion of von Willebrand factor by endothelial cells   总被引:2,自引:0,他引:2  
Human umbilical vein endothelial cells cultured on a collagen lattice were used to study the polarity of von Willebrand factor (vWF) secretion. Endothelial cells cultured under these conditions allow direct measurements of substances released at both the apical and basolateral surface. The constitutive secretion of vWF was compared to the release of vWF from their storage granules after stimulation (regulated secretion). The basal, constitutive release of vWF occurs into both the apical and subendothelial direction. The rate of accumulation of vWF to the subendothelial direction is about three times higher than the amount of vWF secreted into the lumenal medium per unit of time. However, upon stimulation of confluent endothelial cell monolayers with phorbol myristate acetate, endothelial cells predominantly secrete vWF at the lumenal surface. Under these conditions, vWF does not accumulate in the collagen matrix. Thus, endothelial cells are able to organize themselves into a polarized monolayer, in such a way that vWF secreted by the regulated pathway accumulates at the lumenal site, whereas resting endothelial cells release vWF predominantly at the opposite, basolateral surface.  相似文献   

17.
Numerous epithelial cell types produce and secrete plasminogen activators (PAs) and/or PA inhibitors (PAIs). When epithelial cells were grown on polycarbonate filters and their apical and basolateral secretion products analyzed, PA activity accumulated in a highly polarized fashion; depending upon the cell line, the compartment of PA accumulation was either apical (MDCK I cells and HBL-100 cells) or basolateral (LLC-PK1, CaCo-2, and HeLa cells). By contrast, PAI-1 was recovered in roughly equal amounts in both compartments. Basolateral accumulation of urokinase-type plasminogen activator (uPA), but not its apical targeting, required an acidic compartment and the integrity of the cytoskeleton. Polarity of uPA accumulation did not result from removal of the free enzyme from the opposite compartment through its binding to the cell surface. Transfection with wild-type or mutated murine uPA demonstrated that neither the "growth factor" domain nor the kringle domain is required for the appropriate sorting of the protein. We propose that polarized secretion of PAs is one mechanism whereby cells spatially control extracellular proteolysis.  相似文献   

18.
Growth, expression of functional differentiation (as characterized by synthesis and secretion of milk proteins), and primary metabolism were studied for a mouse mammary epithelial cell line, COMMA-1D, in extended-batch and hollow-fiber reactor cultures. Batch cultures were performed on Costar polycarbonate membrane inserts, allowing basal and apical exposure to medium. Protein production was induced in both batch and hollow-fiber cultures in hormonesupplemented medium. In batch cultures, high levels of protein production and secretion were maintained for 18 days. Once differentiation was induced, the rate of deinduction was low, even in medium containing epidermal growth factor (EGF) and serum; cells continued to express and secrete proteins for at least 12 days after prolactin and hydrocortisone were removed. Cells in both batch and hollow-fiber cultures were highly glycolytic and exhibited low rates of glutaminolysis. In batch culture on membrane inserts, cells showed polarized metabolism between the apical and basal side, maintaining significant gradients of glucose and lactate. Medium hormonal composition and subsequent differentiation affected both glucose uptake and lactate yield for COMMA-1D in batch culture. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
Sertoli cells from immature rats (18 days old) were cultured on Millipore filters impregnated with reconstituted basement membrane in bicameral chambers. Three types of cultures were obtained: 1) confluent monolayer cultures that formed a permeability barrier (impermeable), 2) confluent monolayer cultures that did not form a permeability barrier (permeable), and 3) subconfluent cultures (permeable). The relationships among fluid equilibrium, electrical resistance, and [3H]inulin transport between the apical and basal reservoirs of the chambers were examined. An impermeable confluent monolayer is defined when the cells of the Sertoli cell epithelial sheet are able to prevent hydrodynamic equilibration of fluid levels between the apical and basal reservoirs of a bicameral chamber. That is, a permeability barrier is present between the two sides of the chamber when fluid levels (volumes) do not change. In the impermeable confluent Sertoli cell monolayers, 7.5 +/- 0.6% of added [3H]inulin diffused across the monolayer during a 6-h collection period versus 13.7 +/- 0.5% in permeable cultures. Conversely, the electrical resistance was higher in the impermeable monolayers (41-71 ohm.cm2) than in the permeable layers (less than 33 ohm.cm2). A reciprocal linear relationship (Y = -4.68(X) + 91.50, r = 0.808) exists between inulin flux and electrical resistance, and this relationship is a function of cell density. Transferrin (Tf) was one of a few proteins detected in the basal medium of bicameral chambers, whereas most de novo synthesized proteins were secreted into the apical reservoir of the chamber. No significant differences in the total amount of Tf secreted by impermeable or permeable monolayers of Sertoli cells were observed. However, the Sertoli cell secretion ratios (apical/basal) of Tf during a 15-20-h collection period were 2.03 and 1.57 for impermeable monolayers plated at 2.4 x 10(6) and 3.6 x 10(6) cells/well, respectively, but less than 1.0 in permeable layers of cells. When fewer than 2 x 10(6) Sertoli cells were plated, the apical/basal polarity of Tf secretion declined to below 1 in a 24-h culture period, even though those chambers contained impermeable monolayers (recognized by the lack of hydrodynamic equilibrium). These results indicate that polarized secretion by Sertoli cells is dependent on (1) plating density and (2) formation of an impermeable epithelial sheet.  相似文献   

20.
ABSTRACT: BACKGROUND: Increased expression of the pro-fibrotic protein connective tissue growth factor (CTGF) has been detected in injured kidneys and elevated urinary levels of CTGF are discussed as prognostic marker of chronic kidney disease. There is evidence that epithelial cells lining the renal tubular system contribute to uptake and secretion of CTGF. However, the role of different types of tubular epithelial cells in these processes so far has not been addressed in primary cultures of human cells. RESULTS: Tubular epithelial cells of proximal and distal origin were isolated from human kidneys and cultured as polarized cells in insert wells. The pro-fibrotic stimuli lysophosphatidic acid (LPA) and transforming growth factor beta (TGF-beta) were used to induce CTGF secretion.LPA activated CTGF secretion in proximal tubular cells when applied from either the apical or the basolateral side as shown by immunocytochemistry. CTGF was secreted exclusively to the apical side. Signaling pathways activated by LPA included MAP kinase and Rho kinase signaling. TGF-beta applied from either side also stimulated CTGF secretion primarily to the apical side with little basolateral release.Interestingly, TGF-beta activation induced different signaling pathways depending on the side of TGF-beta application. Smad signaling was almost exclusively activated from the basolateral side most prominently in cells of distal origin. Only part of these cells also synthesized CTGF indicating that Smad activation alone was not sufficient for CTGF induction. MAP kinases were involved in apical TGF-beta-mediated activation of CTGF synthesis in proximal cells and a subset of epithelial cells of distal origin. This subpopulation of distal tubular cells was also able to internalize recombinant apical CTGF, in addition to proximal cells which were the main cells to take up exogenous CTGF. CONCLUSIONS: Analysis of polarized human primary renal epithelial cells in a transwell system shows that vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-beta and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号