首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organoids are three-dimensional structures that self-organize from human pluripotent stem cells or primary tissue, potentially serving as a traceable and manipulatable platform to facilitate our understanding of organogenesis. Despite the ongoing advancement in generating organoids of diverse systems, biological applications of in vitro generated organoids remain as a major challenge in part due to a substantial lack of intricate complexity. The studies of development and regeneration enumerate the essential roles of highly diversified nonepithelial populations such as mesenchyme and endothelium in directing fate specification, morphogenesis, and maturation. Furthermore, organoids with physiological and homeostatic functions require direct and indirect inter-organ crosstalk recapitulating what is seen in organogenesis. We herein review the evolving organoid technology at the cell, tissue, organ, and system level with a main emphasis on endoderm derivatives.  相似文献   

2.
Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ function, but is limited by scarce resources. Mesenchymal stem cell (MSC)‐based therapy carries promising potential in regenerative medicine because of the self‐renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will contribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chemical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into the promotion of MSC‐based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future.  相似文献   

3.
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function and evolution. However, there is currently a gap between the fast pace of TE discovery in silico, driven by the exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, ‘Mobile Genetic Elements: in silico, in vitro, in vivo’, held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA.  相似文献   

4.
5.
《Neuron》2022,110(5):770-782.e5
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

6.
《Neuron》2023,111(10):1564-1576.e6
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

7.
Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1β and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.  相似文献   

8.
Oncostatin M (OSM) is a pleiotropic cytokine within the interleukin six family of cytokines, which regulate cell growth and differentiation in a wide variety of biological systems. However, its action and underlying mechanisms on stem Leydig cell development are unclear. The objective of the present study was to investigate whether OSM affects the proliferation and differentiation of rat stem Leydig cells. We used a Leydig cell regeneration model in rat testis and a unique seminiferous tubule culture system after ethane dimethane sulfonate (EDS) treatment to assess the ability of OSM in the regulation of proliferation and differentiation of rat stem Leydig cells. Intratesticular injection of OSM (10 and 100 ng/testis) from post‐EDS day 14 to 28 blocked the regeneration of Leydig cells by reducing serum testosterone levels without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. It also decreased the levels of Leydig cell‐specific mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins by the RNA‐Seq and Western blotting analysis. OSM had no effect on the proliferative capacity of Leydig cells in vivo. In the seminiferous tubule culture system, OSM (0.1, 1, 10 and 100 ng/mL) inhibited the differentiation of stem Leydig cells by reducing medium testosterone levels and downregulating the expression of Leydig cell‐specific genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins. OSM‐mediated action was reversed by S3I‐201 (a STAT3 antagonist) or filgotinib (a JAK1 inhibitor). These data suggest that OSM is an inhibitory factor of rat stem Leydig cell development.  相似文献   

9.
Bacillus subtilis is a model organism for Gram‐positive bacteria and widely used in the study of cellular functions and processes including protein secretion, sporulation, and signal transduction. It is also an important industrial host for the production of proteins and chemicals. Generally, genome editing of B. subtilis often needs the construction of integration vectors in Escherichia coli, linearizing the constructed plasmids, and subsequent transformation of the linear deoxyribonucleic acid via natural competence or electroporation. In this work, we examined the feasibility to directly transform and integrate B. subtilis using linear deoxyribonucleic acid from Gibson assembly without the need for cloning in E. coli. Linear deoxyribonucleic acid of 8–10 kb showed the highest transformation efficiency which was similar to that of using linearized plasmids constructed in E. coli. This method shortens the overall process from 1 week to 1 day and allows the integration of multiple genes in one step, providing a simple and fast method for genome editing in B. subtilis.  相似文献   

10.
11.
《Acta Oecologica》2006,29(2):178-186
Saguaro cacti (Carnegiea gigantea) are long-lived and exhibit great variability in growth that makes age estimation problematic. A few single-site studies have focused on those locales where long-term data (e.g. 85 years) are available. Using a newly developed technique, 733 saguaros were sampled in three locales (Silverbell, Harcuvar, Kofa) across Arizona and their age structure reconstructed for the last 150 years based on a mathematical model of the heights of individuals. This is the first study to compare regeneration at multiple locations across the species' range. Regression analysis for each site (years and frequency of individuals established during that year) was run and residuals extracted to determine peaks and troughs in regeneration over time. Correlation was run on the residuals between sites, and chi-square analysis was employed to compare frequency of good and bad regeneration years between Kofa and Silverbell. Peaks and troughs represent regeneration as well as survivorship and mortality. Several large cohorts established at Kofa and Harcuvar since 1850, while at Silverbell well over 80% of sampled saguaros established after the late 1930s. This more recent recruitment at Silverbell may be related to the major freezing event of 1937 whose impact was likely greater at the cooler Silverbell site. Despite the widely different population structures at Silverbell and Kofa, recruitment trends in both populations were statistically linked as both locales often benefited from the same favorable periods for regeneration (P < 0.001). The Harcuvar population shares some common peaks and troughs in regeneration over time with Kofa and Silverbell, but its relationship to them is not statistically significant. Some trends overlap in some locales, such as the favorable regeneration period in the late 1800s and early 1900s, particularly at Silverbell and Kofa as well as at other known sites. However, each population has its own signature. Silverbell is a youthful population likely shaped by severe freezing events, while Kofa has many individuals representing regeneration at several different periods. Regeneration, mortality and subsequent population structure is shaped by both regional-scale influences as well as more localized conditions over the long and short terms.  相似文献   

12.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

13.
14.
15.
16.
Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning.In the context of biosynthesis, supervised machine learning is being exploited to predict biological sequence activities, predict structures and engineer sequences, and optimize culture conditions.Active and reinforcement learning methods use training sets acquired through an iterative process generally involving experimental measurements. They are applied to design, engineer, and optimize metabolic pathways and bioprocesses.The nascent but promising developments with in vitro and in vivo learning comprise molecular circuits performing simple tasks such as pattern recognition and classification.  相似文献   

17.
18.
Hepatocellular carcinoma (HCC) is a high incidence and mortality malignant tumour globally. Betulinic acid (BA) is a pentacyclic triterpenoid with potential pro‐apoptotic activities which widely found in many plants. In this study, we determined the effects of BA on proliferation, apoptosis, invasion, and metastasis in HCC cell lines and on tumour growth and pulmonary metastasis in mice. The results suggested that BA could inhibit cell viability and proliferation of HCC cell lines including HepG2, LM3, and MHCC97H. In addition, BA induced apoptosis of HepG2 cells characterised condensed nuclei and nuclear fragmentation. Moreover, western blot analysis showed that BA‐induced apoptosis associated with increasing of pro‐apoptotic protein Bax and cleaved caspase‐3 and decreasing of anti‐apoptotic protein Bcl‐2. Meanwhile, BA also reduced the reactive oxygen species (ROS) level. Furthermore, BA also significantly inhibited HCC growth in vivo and blocked pulmonary metastasis of HCC by regulating the metastasis‐related proteins including MMP‐2, MMP‐9, and TIMP2 without obvious toxicity. In all, the present study suggested that BA might be a promising anti‐HCC drug candidate by inhibiting proliferation, inducing apoptosis, and blocking metastasis.  相似文献   

19.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

20.
《Acta Oecologica》2006,29(1):97-103
Mast seeding or masting is the supra-annual periodic production of a large number of seeds by long-lived plants. It has been suggested that this may be a strategy to increase pollination efficiency. Sorbus aucuparia is a masting tree typically showing rather low fruit set, though with some variation among years and populations, together with marked among-year variation in flower and fruit production. Here we report a study of the reproductive biology and insect-visitor spectrum of S. aucuparia in the NW Iberian Peninsula. Results obtained over a 4-year period indicate marked self-incompatibility, so that fruit set is strongly dependent on pollinator service. Nevertheless, fruit and seed set were not limited by pollen supply in any of the years of study, since fruit and seed set after manual cross-pollination were no higher than after natural pollination. Inflorescences were visited by diverse insect species. There was no significant correlation between fruit set and insect visit frequency. Taken together, these findings indicate that the rather low fruit and seed sets observed in this species, and the spatiotemporal variation in these parameters, must be attributed to other factors, such as abiotic resource availability. We conclude that masting in S. aucuparia is probably not a strategy for increasing pollination efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号