首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monoclonal antibodies have been raised against haustorial complexes isolated from pea (Pisum sativum L.) leaves infected by the biotrophic powdery mildew fungus Erysiphe pisi D.C. Immuno-localisation studies, using isolated haustorial complexes and infected pea leaf material, have shown that one of the antibodies, designated UB7, binds to fungal wall and plasma membranes present in both haustoria and mycelia. However, a second antibody, UB8, binds specifically to the haustorial plasma membrane, and does not label fungal plasma membranes in mycelia. Western blotting and antigen-modification techniques have shown that UB8 recognises a protein epitope of a 62-kDa antigen. A reduction in molecular weight of this component after endo-F treatment indicates that the antigen is an N-linked glycoprotein. UB7 also recognises a 62-kDa glycoprotein, which is susceptible to endo-F treatment, and the antibody binds to a carbohydrate epitope. Differences in molecular weights of the products after endo-F treatment of antigens show that the 62-kDa glycoproteins recognised by the antibodies are distinct molecules, in accordance with the localisation results. Overall, the results provide evidence for molecular differentiation associated with the development of haustoria in a biotrophic infection.Abbreviations ehm extrahaustorial membrane - ELISA enzyme-linked immunosorbent assay - HC haustorial complex - hpm haustorial plasma membrane - IIF indirect immunofluorescence - MAb monoclonal antibody - Mr apparent molecular weight - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We thank Mr. D. Mills and Mr. P. Stanley for help with the EM immunogold techniques. This work was supported by an Agricultural and Food Research Council grant and a studentship from the Science and Engineering Research Council.  相似文献   

2.
Gisela Mäck 《Planta》1995,196(2):231-238
One cytosolic glutamine synthetase (GS, EC 6.3.1.2) isoform (GS 1a) was active in the germinating seeds of barley (Hordeum vulgare L.). A second cytosolic GS isoform (GS 1b) was separated from the leaves as well as the roots of 10-d-old seedlings. The chloroplastic isoform (GS 2) was present and active only in the leaves. The three GS isoforms were active in N-supplied (NH+ 4 or NO 3 ) as well as in N-free-grown seedlings. This indicates (i) that a supply of nitrogen to the germinating seeds was not necessary for the induction of the GS isoforms and (ii) that no nitrogen-specific isoforms appeared during growth of seedlings with different nitrogen sources. The activity of GS, however, depended on the seedlings' nitrogen source: the specific activity was much higher in the leaves and much lower in the roots of NH+ 4-grown barley than in the respective organs of NO 3 -fed or N free-grown plants. With increasing concentrations of NH+ 4 (supplied hydroponically during growth), the specific activity of GS 1b increased in the leaves, but decreased in the roots. The activity of GS 2 (leaf) also increased with increasing NH+ 4 supply, whereas GS 1a activity (leaf and root) was not affected. The changes in the activities of GS 1b and GS 2 were correlated with changes in the subunit compositions of the active holoenzymes: growth at increased levels of external NH+ 4 resulted in an increased abundance of one of the four GS subunits, and of two of the five GS 1b subunits in the leaves. In the roots, however, the abundance of these two GS 1b subunits was decreased under the same growth conditions, indicating an organ-specific difference either in the expression of the genes coding for the respective GS 1b subunits or in the assembly of the GS 1b holoenzymes. Furthermore, growth at different levels of NH+ 4 resulted in changes in the substrate affinities of the isoforms GS 1b (root and leaf) and GS 2 (leaf), presumably due to the changes in the subunit compositions of the active holoenzymes.Abbreviations FPLC fast protein liquid chromatography - GHA -glutamyl hydroxamate - GS glutamine synthetase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

3.
Plasmopara penniseti is the sole member of the genus Plasmopara parasitic to Poaceae, after the genus Viennotia had been described to accommodate Plasmopara oplismeni. Morphological, ultrastructural, and molecular phylogenetic data indicate that Plasmopara penniseti is not closely related to the generic type, and it is, therefore, transferred to the newly described genus Poakatesthia. The view that the genera of downy mildews with pyriform to vesicular haustoria (Basidiophora, Benua, Bremia, Paraperonospora, Plasmopara, Plasmoverna, and Protobremia) include species parasitic to Poaceae has to be discarded. All of these genera are apparently restricted to dicotyledonous hosts.  相似文献   

4.
Summary Two of the commonly used probes for measuring membrane potential—lipophilic cations and the cyanine dye diS-C3(5)—indicated nominally opposite results when tetraphenylarsonium ion was added as a drug to suspensions of metabolizingBacillus subtilis cells. [3H]-Triphenylmethylphosphonium uptake was enhanced by the addition, indicating hyperpolarization, yet fluorescence of diS-C3(5) was also enhanced, indicating depolarization. Evidence is presented that both effects are artifactual, and can occur without any change in membrane potential, as estimated by86Rb+ uptake in the presence of valinomycin. The fluorescence studies suggest that tetraphenylarsonium ion displaces the cyanine dye from the cell envelope, or other binding site, into the aqueous phase.The uptake characteristics of the radiolabeled lipophilic cations were quite unusual: At low concentrations (e.g., less than 10 m for triphenylmethylphosphonium) there was potential-dependent uptake of the label to a stable level, but subsequent addition of nonradioactive lipophilic cation caused further uptake of label to a new stable level. Labeled triphenylmethylphosphonium ion taken up to the first stable level could be displaced by 10mm magnesium ion, whereas86Rb+ uptake was unperturbed. Association of the lipophilic cations with the surface of de-energized cells was concentration-dependent, but there was no evidence for cooperative binding. This phenomenon of stimulated uptake inB. subtilis (which was not seen inEscherichia coli cells or vesicles) is consistent with a two-compartment model with access to the second compartment only being possible above a critical cation concentration. We tentatively propose such a model, in which these compartments are the cell surface and the cytoplasm, respectively.Triphenylmethylphosphonium up to 0.5mm exhibited linear binding to de-energized cells; binding of tetraphenylphosphonium and tetraphenylarsonium was nonlinear but was not saturated at the highest concentration tested (1mm). The usual assumption, that association of the cation with cell surfaces is saturated and so can be estimated on de-energized cells, therefore leads to undercorrected estimates of cytoplasmic uptake inB. subtilis, and hence to overestimates of membrane potential. We describe a more realistic procedure, in which the estimate of extent of binding is based on a mean aqueous concentration related both to the external concentration and to the much higher internal concentration that exists in energized cells. Using this procedure we estimate the membrane potential inB. subtilis to be 120 mV, inside-negative. The procedure is of general applicability, and should yield more accurate estimates of membrane potential in any system where there is significant potential-dependent binding.Work performed while on sabbatical leave from Department of Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.  相似文献   

5.
Two experimental systems were developed to study the uptake of sucrose by the dermal transfer cells of developing cotyledons of Vicia faba L. First, the in-vivo state was approximated by short-term (10 min) incubation of whole cotyledons in [14C]sucrose solutions. Under these conditions, a minimum of 67% of the 14C label entered the dermal transfer cell complex. Of this, at least 40% crossed the plasma membranes of the epidermal transfer cells. Second, a protocol was developed to enzymatically isolate and purify dermal transfer cell protoplasts. The yields of the transfer cell protoplasts were relatively low and their preparation incurred a significant loss of plasma membrane. However, the protoplasts remained viable up to 24 h following purification and proved to be a suitable system to verify transport properties observed with whole cotyledons. Using these two experimental systems, it was established that [14C]sucrose uptake by the dermal transfer cells exhibited features consistent with mediated energy-dependent transport. This included saturation kinetics, competition for uptake between structurally similar molecules, and inhibition of uptake by p-chloromercuribenzenesulfonic acid and several other metabolic inhibitors. For comparative purposes, sugar uptake by the storage parenchyma of the Vicia cotyledons was also examined. In contrast to the dermal transfer cell complex, sucrose uptake by the storage parenchyma displayed characteristics consistent with simple diffusion.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid The investigation was supported by funds from the Research Management Committee, the University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

6.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

7.
From measurements of the rates of depletion of labelled ions from solution in the low concentration range, we described the phosphate and potassium uptake characteristics of the roots of intact barley plants in terms of the kinetic parameters, K m and I max (the maximum rate of uptake). In relatively young (13 d) and older (42 d) plants, cessation of phosphate supply for 4 d or more caused a marked increase in I max (up to four times), without concomitant change in K m, which remained between 5 and 7 M. By contrast, 1 d of potassium starvation with 14-d plants caused a decline in the K m (i.e. an increased apparent affinity for potassium) from 53 M to 11 M, without alteration to I max. After longer periods of potassium starvation, I max increased (about two times) while the K m remained at the same low value. Growth of shoots and roots were unaffected by these treatments, so that concentrations of ions in the tissues declined after 1 d or more of nutrient starvation, but we could not identify a characteristic endogenous concentration for either nutrient at which changes in kinetic parameters were invariably induced. The possible mechanisms regulating carriermediated transport, and the importance of changes induced in kinetic parameters in ion uptake from solution and soil are discussed.Symbol I max the maximum rate of absorption at saturating concentrations  相似文献   

8.
A metal-salt precipitation method with p-nitrophenyl phosphate as substrate has been used to localize in the electron microscope acid phosphatase activity in isolated aleurone layers of barley (Hordeum vulgare L.), treated for 16 h in the presence or absence of gibberellic acid (GA3). The paper confirms results obtained earlier with an azo-dye precipitation method of enzyme localization. In addition the results show for the first time that in GA3-treated tissue enzyme activity is associated with the endoplasmic reticulum (ER), there being reaction product deposited in the ER cisternae. It is suggested that this activity represents new enzyme synthesized on ER in response to GA3 and probably destined for secretion.Abbreviation ER endoplasmic reticulum  相似文献   

9.
Glycollate dehydrogenase and NADFH-glyoxylate reductase are constitutive enzymes in Percoll-purified mitochondria from phototrophic, mixotrophic and organotrophic cells of Euglena gracilis Klebs strain z Pringsheim. Glycollate oxidation by isolated mitochondria is stimulated four-fold by the addition of glutamate but rates of glycine oxidation are low in mitochondria from all cell types, the ratio of malate to glycine oxidation always being greater than 4:1. Measurement of the rate of NADPH oxidation in intact mitochondria and mitoplasts showed that the outer mitochondrial membrane is impermeable to NADPH and in the absence of NADPH-dehydrogenase activity the oxidation of NADPH by mitoplasts is dependent on the presence of glyoxylate for NADPH-glyoxylate-reductase activity. It is concluded that glycollate oxidation in the mitochondrion provides glyoxylate which, in the presence of a suitable amino-donor, can be converted to glycine by glutamate-glyoxylate amino-transferase so providing essential intermediates for biosynthesis. Glycollate oxidation outside the mitochondrion is concerned with photorespiratory metabolism and the inability of mitochondria to oxidise exogenous glycine at appreciable rates means that the separation of photorespiratory metabolism from the biosynthesis of essential intermediates is effected.  相似文献   

10.
D. J. Hardy  J. W. Payne 《Planta》1991,186(1):44-51
The preparation of a phenylalanine analogue containing an azido group and its incorporation into dipeptides is described. Peptides modified in this way are taken up into barley (Hordeum vulgare L.) scutella via the previously characterized peptide-transport system. Photoactivation of modified peptides in the presence of isolated scutella resulted in irreversible inhibition of peptide uptake in a concentration-dependent manner. Transport of other solutes which share a common mechanism of energy coupling, but which are transported via distinct carriers, was not inhibited after photo-derivatization of scutella with the modified peptides. Derivatization of isolated scutellar tissue with a 14C-labelled peptide analogue, resulted in incorporation of label into two proteins of Mr = 54000 and 41000. Scutellar tissue from early-germinating seeds, which do not show active peptide uptake, did not incorporate label into these polypeptides. It is concluded that these proteins are components of the barley peptide-transport system.Abbreviations Ala alanine - Gly glycine - PAGE polyacrylamide gel electrophoresis - Phe phenylalanine - Pro proline - SDS sodium dodecyl sulphate This work was supported by a grant from the Agricultural and Food Research Council.  相似文献   

11.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland).  相似文献   

12.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

13.
The catalytic activities of the chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase (PGK; EC 2.7.2.3) have been followed during the development of the first leaf of barley (Hordeum vulgare L.) grown for 7 d in darkness followed by transfer to continuous illumination. The investigation has included both the study of a standard leaf section, measured from the leaf tip, over the whole life of the leaf and the study of serial sections of leaf, measured from the leaf base, at a standard sampling time. The results of both approaches were fully compatible. As the catalytic activity of each isoenzyme in the standard assay is directly proportional to the amount of isoenzyme protein present, the catalytic activities may be interpreted wholly in terms of enzyme synthesis and degradation. Both isoenzymes are synthesized in darkness and in etiolated barley are present at a ratio of about 2674 for the cytosolic to chloroplastic isoenzymes. Illumination results in a fivefold or greater increase in chloroplast PGK over a number of days with little change of the cytosolic isoenzyme, resulting in an eventual ratio of cytosolic to chloroplastic isoenzymes approaching the green-leaf value of about 991. Prior to any detectable onset of senescence a 15-fold increase in cytosolic isoenzyme commenced while the amount of chloroplast PGK remained constant. It is suggested that the increased cytosolic PGK may be involved in the export of carbohydrate reserves (starch) prior to leaf senescence. Both isoenzymes subsequently decline in parallel to total protein and chlorophyll in the course of senescence.Abbreviations DHAP reductase dihydroxyacetone-phosphate reductase - GS glutamine synthetase - LHCP light-harvesting chlorophyll-a/b-binding protein - PGK phosphoglycerate kinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work was supported by the Science and Engineering Research Council (grant no. GR/E54504).  相似文献   

14.
R. J. Reid  L. D. Field  M. G. Pitman 《Planta》1985,166(3):341-347
31P-Nuclear magnetic resonance spectroscopy was used to measure the cytoplasmic pH (pHc) in barley (Hordeum vulgare L.) root tips. As the external pH was raised from 4–10, pHc was found to increase from 7.44 to 7.75. The sensitivity of pHc to changes in external pH decreased with increasing external pH. Metabolic inhibition by sodium azide caused pHc to fall by 0.3 units. Addition of 10 mM butyrate resulted in a gradual decline in pHc, by approx. 0.3 units over 90 min. At a concentration of 1 mM, butyrate had no effect on pHc even after 2 h. Fusicoccin caused pHc to rise by 0.1–0.2 units. In maize (Zea mays L.) root tips, pHc was shown to have a similar sensitivity to fusicoccin. The results are discussed in relation to the regulation of pHc and the possible role of pHc in determining transmembrane electrical potential differences.Abbreviations and symbols FC Fusicoccin - NMR nuclear magnetic resonance - p.d. membrane electrical potential difference - pHc cytoplasmic pH - P1 inorganic phosphate - chemical shift  相似文献   

15.
A fluorescence method for the direct measurement of Cl- transport in isolated tonoplast vesicles is described. This technique utilises the Cl--sensitive fluorescent compound, 6-methoxy-1-(3-sulfonatopropyl)quinolinium (SPQ). This is a water-soluble compound with excitation and emission wavelengths of 350 and 440 nm, respectively. Its fluorescence is quenched by Cl-, Br-, I-, SCN-, NO 2 - and tetraphenylborate but not by NO 3 - , SO 4 2- , iminodiacetate or malate. These effects are independent of pH. This compound was loaded into tonoplast vesicles from red beet (Beta vulgaris L.) storage roots or from barley (Hordeum vulgare L.) roots by incubation at 37° C and the external probe was then removed by repeated centrifugation of the vesicles in SPQ-free medium. In this way a large proportion of the observed fluorescence signal was from the interior of the vesicles, and its quenching could be used to monitor, quantitatively, and in real time, the intravesicular Cl- concentration. In this paper we describe some of the problems encountered in using this probe to measure Cl- transport in tonoplast vesicles, how these were overcome and some characteristics of Cl- transport at the tonoplast as measured by the probe.Abbreviations and symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino-propane - DTT dithiothreitol - membrane potential - pH pH gradient - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

16.
A mutant of Hordeum vulgare L. (LaPr 85/84) deficient in serine: glyoxylate aminotransferase (EC 2.6.1.45) activity has been isolated. The plant also lacks serine: pyruvate aminotransferase and asparagine: glyoxylate aminotransferase activities. Genetic analysis of the mutation strongly indicates that these three activities are all carried on the same enzyme protein. The mutant is incapable of normal rates of photosynthesis in air but can be maintained at 0.7% CO2. The rate of photosynthesis cannot be restored by supplying hydroxypyruvate, glycerate, glutamate or ammonium sulphate through the xylem stream. This photorespiratory mutant demonstrates convincingly that photorespiration still occurs under conditions in which photosynthesis becomes insensitive to oxygen levels. Two major peaks and one minor peak of serine: glyoxylate aminotransferase activity can be separated in extracts of leaves of wild-type barley by diethylaminoethyl-sephacel chromatography. All three peaks are missing from the mutant, LaPr 85/84. The mutant showed the expected rate (50%) of ammonia release during photorespiration but produced CO2 at twice the wild-type rate when it was fed [14C]glyoxylate. The large accumulation of serine detected in the mutant under photorespiratory conditions shows the importance of the enzyme activity in vivo. The effect of the mutation on transient changes in chlorophyll a fluorescence initiated by changing the atmospheric CO2 concentration are presented and the role of the enzyme activity under nonphotorespiratory conditions is discussed.Abbreviations DEAE diethylaminoethyl - PFR photon fluence rate - SGAT serine:glyoxylate aminotransferase  相似文献   

17.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   

18.
The sensitivity of the fluorescent dye, 3,3′-diethylthiadicarbocyanine (DiS-C2(5)), was too low for the detection of membrane potential changes in rat small intestinal membrane vesicles. Only after adding LaCl3 or after fractionation of the intestinal membranes by free-flow electrophoresis could the dye be used to monitor electrogenic Na+-dependent transport systems. It is concluded that the response of this potential-sensitive dye is influenced by the negative surface charge density of the vesicles.  相似文献   

19.
Vacuoles were isolated from primary leaves of barley (Hordeum vulgare L.) by mechanical breakage of protoplasts, and their polypeptide composition analyzed by two-dimensional gel electrophoresis. Vacuoplasts which consist of the vacuole, a portion of the plasmalemma and of the cytoplasma were prepared from protoplasts by ultracentrifugation. By comparing the vacuolar polypeptide pattern with polypeptide patterns of isolated chloroplasts and of vacuoplasts, vacuolar polypeptides could clearly be distinguished from polypeptides derived from cross-contaminating cell compartments. At least 14 polypeptides of apparent molecular mass between 12 and 76 kilodaltons and an isoelectric point between 4.5 and 7.6 could be attributed to the tonoplast fraction of the vacuole, and 35 polypeptides to the soluble fraction of the vacuole. Several lectins with different specificity were employed to characterize the degree and nature of glycosylation of vacuolar polypeptides. Concanavalin A bound to a large number of polypeptides. Three out of the 14 tonoplast polypeptides exhibited detectable carbohydrate moieties and almost two-thirds of the surveyed soluble polypeptides were glycosylated.Abbreviations IEF isoelectric focussing - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

20.
Careful cutting of the hypocotyl of Ricinus communis L. seedlings led to the exudation of pure sieve-tube sap for 2–3 h. This offered the possibility of testing the phloem-loading system qualitatively and quantitatively by incubating the cotyledons with different solutes of various concentrations to determine whether or not these solutes were loaded into the sieve tubes. The concentration which was achieved by loading and the time course could also be documented. This study concentrated on the loading of sucrose because it is the major naturally translocated sieve-tube compound. The sucrose concentration of sieve-tube sap was approx. 300 mM when the cotyledons were buried in the endosperm. When the cotyledons were excised from the endosperm and incubated in buffer, the sucrose concentration decreased gradually to 80–100 mM. This sucrose level was maintained for several hours by starch breakdown. Incubation of the excised cotyledons in sucrose caused the sucrose concentration in the sieve tubes to rise from 80 to 400 mM, depending on the sucrose concentration in the medium. Thus the sucrose concentration in the sieve tubes could be manipulated over a wide range. The transfer of labelled sucrose to the sieve-tube sap took 10 min; full isotope equilibration was finally reached after 2 h. An increase of K+ in the medium or in the sieve tubes did not change the sucrose concentration in the sievetube sap. Similarly the experimentally induced change of sucrose concentration in the sieve tubes did not affect the K+ concentration in the exudate. High concentrations of K+, however, strongly reduced the flow rate of exudation. Similar results were obtained with Na+ (data not shown). The minimum translocation speed in the sieve tubes in vivo was calculated from the growth increment of the seedling to be 1.03 m·h-1, a value, which on average was also obtained for the exudation system with the endosperm attached. This comparison of the in-vivo rate of phloem transport and the exudation rate from cut hypocotyls indicates that sink control of phloem transport in the seedlings of that particular age was small, if there was any at all, and that the results from the experimental exudation system were probably not falsified by removal of the sink tissues.Abbreviations PTS 3-hydroxy-5,8, 10-pyrenetrisulfonate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号