首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urinary tract infections are a major source of morbidity among women, with the majority caused by uropathogenic Escherichia coli. Our objective was to test if uropathogenic E. coli suppress the innate immune response of bladder epithelial cells. We found that bladder epithelial cells secrete interleukin-6 and interleukin-8 in response to non-pathogenic E. coli, whereas they failed to do so in response to uropathogenic E. coli. Uropathogenic E. coli prevented interleukin-6 secretion in response to non-pathogenic E. coli and a panel of Toll-like receptor agonists, as well as to interleukin-1beta, but not to tumor necrosis factor alpha. These results indicate that receptors with a Toll/interleukin-1 receptor domain are specifically targeted, and that suppression is not a consequence of toxicity. One candidate for mediating immune suppression is bacterial lipopolysaccharide. However, lipopolysaccharide isolated from either uropathogenic or non-pathogenic E. coli stimulated interleukin-6 secretion to similar levels. In addition, uropathogenic E. coli did not stimulate interleukin-6 secretion from cells expressing a dominant negative Toll-like receptor 4, and prevented cells lacking Toll-like receptor 4 from secreting interleukin-6 in response to synthetic lipoprotein. We conclude that uropathogenic E. coli suppress the innate immune response through a pathway partially independent of lipopolysaccharide and Toll-like receptor 4.  相似文献   

2.
Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C. trachomatis.We found that dominant negative MyD88 inhibited interleukin-8 (IL-8) secretion during a productive infection with chlamydia. Furthermore, expression of Toll-like receptor (TLR)-2 was required for IL-8 secretion from infected cells, whereas the effect of TLR4/MD-2 expression was minimal. Cell activation was dependent on infection with live, replicating bacteria, because infection with UV-irradiated bacteria and treatment of infected cells with chloramphenicol, but not ampicillin, abrogated the induction of IL-8 secretion. Finally, we show that both TLR2 and MyD88 co-localize with the intracellular chlamydial inclusion, suggesting that TLR2 is actively engaged in signaling from this intracellular location. These data support the role of TLR2 in the host response to infection with C. trachomatis. Our data further demonstrate that TLR2 and the adaptor MyD88 are specifically recruited to the bacterial or inclusion membrane during a productive infection with chlamydia and provide the first evidence that intracellular TLR2 is responsible for signal transduction during infection with an intracellular bacterium.  相似文献   

3.
While genital infections caused by Chlamydia trachomatis are generally asymptomatic, the density and pattern of inflammation varies considerably. The purpose of this study was to try to dissect the signalling in chlamydiae-infected epithelial cells that triggers innate responses and regulates polymorphonuclear neutrophil (PMN) chemotaxis. Polarized endocervical epithelial HeLa cells, grown in commercial inserts, were inoculated either with the non-disseminating (luminal) serovar E or the disseminating serovar L2. At 12–48 h after infection, the chambers were used in a quantitative chemotaxis assay, and cytokine production by infected cells was examined using cDNA microarray technology and confirmed by enzyme-linked immunosorbent assay (ELISA). Infection of HeLa cells with C. trachomatis E or L2 induced a strong and similar PMN chemotactic response, but larger amounts of interleukin (IL)-8 and IL-11 were released after infection with serovar L2. IL-6 was also produced in modest amounts after infection with either strain, but no IL-1α or tumour necrosis factor (TNF)-α was detected in any of the culture supernatants tested. IL-11 did not appear to influence the PMN response to chlamydial infection, but secretion of large amounts of this anti-inflammatory cytokine, mainly active on macrophages, in the very early stages of the infection may allow C. trachomatis to escape some innate defences to establish infection.  相似文献   

4.
Infection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo.  相似文献   

5.
Four commonly used reference endotoxin standards, Escherichia coli O113:H10:K0, E. coli O55:B5, Salmonella abortusequi, and Shigella dysenteriae were compared by the USP rabbit pyrogen and the Limulus amoebocyte lysate tests. By the rabbit pyrogen test, S. abortus equi was identified as the most potent endotoxin, followed closely by E. coli O113:H10:K0 and E. coli O55:B5.  相似文献   

6.
The Chlamydia trachomatis divalent cation-dependent regulator (DcrA), encoded by open reading frame CT296, is a distant relative of the ferric uptake regulator (Fur) family of iron-responsive regulators. Chlamydial DcrA specifically binds to a consensus Escherichia coli Fur box and is able to complement an E. coli Fur mutant. In this report, the E. coli Fur titration assay (FURTA) was used to locate chlamydial genomic sequences that are recognized by E. coli Fur. The predictive regulatory regions of 28 C. trachomatis open reading frames contained sequences functionally recognized by E. coli Fur; targets include components of the type III secretion pathway, elements involved in envelope and cell wall biogenesis, predicted transport proteins, oxidative defense enzymes, and components of metabolic pathways. Selected FURTA-positive sequences were subsequently examined for recognition by C. trachomatis DcrA using an electrophoretic mobility shift assay. The resultant data show that C. trachomatis DcrA binds to native chlamydial genomic sequences and, overall, substantiate a functional relationship between chlamydial DcrA and the Fur family of regulators.  相似文献   

7.
The lipopolysaccharide (LPS) of Chlamydia trachomatis serotype E was isolated from tissue culture-grown elementary bodies and analyzed structurally by mass spectrometry and 1H, 13C and 31P nuclear magnetic resonance. The LPS is composed of the same pentasaccharide bisphosphate alphaKdo-(2-8)-alphaKdo-(2-4)-alphaKdo-(2-6)-betaGlcN-4P-(1-6)-alphaGlcN-1P (Kdo is 3-deoxy-alpha-d-manno-oct-2-ulosonic acid) as reported for C. trachomatis serotype L2[Rund, S., Lindner, B., Brade, H. and Holst, O. (1999) J. Biol. Chem. 274, 16819-16824]. The glucosamine disaccharide backbone is substituted with a complex mixture of fatty acids with ester or amide linkage whereby no ester-linked hydroxy fatty acids were found. The LPS was purified carefully (with contaminations by protein or nucleic acids below 0.3%) and tested for its ability to induce proinflammatory cytokines in several readout systems in comparison to LPS from C. trachomatis serotype L2 and Chlamydophila psittaci strain 6BC as well as enterobacterial smooth and rough LPS and synthetic hexaacyl lipid A. The chlamydial LPS were at least 10 times less active than typical endotoxins; specificity of the activities was confirmed by inhibition with the LPS antagonist, B1233, or with monoclonal antibodies against chlamydial LPS. Like other LPS, the chlamydial LPS used toll-like receptor TLR4 for signalling, but unlike other LPS activation was strictly CD14-dependent.  相似文献   

8.
The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis and capable of eliciting protective antibodies in infected hosts, and therefore has potential as a candidate vaccine to prevent infection with this significant human pathogen. The recombinant MOMP clone, L2rMOMP, contained the entire MOMP gene including the encoded leader sequence. Large quantities of chlamydial MOMP were expressed, some of which was processed and translocated to the E. coli surface. Surface localization of the MOMP was demonstrated by the binding of anti-MOMP monoclonal antibodies to the surface of the induced clone, and was visualized by fluorescence and electron microscopy. The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including the contribution of the MOMP variable segments to the topographical interactions which determine the antigenic structure responsible for human immune response.  相似文献   

9.
Chlamydia trachomatis is an obligate intracellular pathogen that can persist in the urogenital tract. Mechanisms by which C. trachomatis evades clearance by host innate immune responses are poorly described. CD1d is MHC-like, is expressed by epithelial cells, and can signal innate immune responses by NK and NKT cells. Here we demonstrate that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation. A chlamydial proteasome-like activity factor (CPAF) interacts with the CD1d heavy chain, and CPAF-associated CD1d heavy chain is then ubiquitinated and directed along two distinct proteolytic pathways. The degradation of immature glycosylated CD1d was blocked by the proteasome inhibitor lactacystin but not by MG132, indicating that degradation was not via the conventional proteasome. In contrast, the degradation of non-glycosylated CD1d was blocked by lactacystin and MG132, consistent with conventional cellular cytosolic degradation of N-linked glycoproteins. Immunofluorescent microscopy confirmed the interruption of CD1d trafficking to the cell surface, and the dislocation of CD1d heavy chains into both the cellular cytosol and the chlamydial inclusion along with cytosolic CPAF. C. trachomatis targeted CD1d toward two distinct proteolytic pathways. Decreased CD1d surface expression may help C. trachomatis evade detection by innate immune cells and may promote C. trachomatis persistence.  相似文献   

10.
Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidence for synthesis of PG. In this work, we undertook a genetics-based approach to reevaluate the chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that catalyzes the first committed step of PG synthesis. The murA gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible, glucose-repressible ara promoter and transformed into Escherichia coli. After transduction of a lethal DeltamurA mutation into the strain, viability of the E. coli strain became dependent upon expression of the C. trachomatis murA. DNA sequence analysis of murA from C. trachomatis predicted a cysteine-to-aspartate change in a key residue within the active site of MurA. In E. coli, the same mutation has previously been shown to cause resistance to fosfomycin, a potent antibiotic that specifically targets MurA. In vitro activity of the chlamydial MurA was resistant to high levels of fosfomycin. Growth of C. trachomatis was also resistant to fosfomycin. Moreover, fosfomycin resistance was imparted to the E. coli strain expressing the chlamydial murA. Conversion of C. trachomatis elementary bodies to reticulate bodies and cell division are correlated with expression of murA mRNA. mRNA from murB, the second enzymatic reaction in the PG pathway, was also detected during C. trachomatis infection. Our findings, as well as work from other groups, suggest that a functional PG pathway exists in Chlamydia spp. We propose that chlamydial PG is essential for progression through the developmental cycle as well as for cell division. Elucidating the existence of PG in Chlamydia spp. is of significance for the development of novel antibiotics targeting the chlamydial cell wall.  相似文献   

11.
G J Gray  R Kaul  K L Roy    W M Wenman 《Journal of bacteriology》1991,173(5):1663-1669
The cloning of a Chlamydia trachomatis eukaryotic cell-binding protein reported earlier from our laboratory (R. Kaul, K. L. Roy, and W. M. Wenman, J. Bacteriol. 169:5152-5156, 1987) represents an artifact generated by nonspecific recombination of chromosomal DNA fragments. However, the amino terminus of this plasmid-encoded fusion product demonstrated significant homology to Escherichia coli ribosomal protein L6. By using a 458-bp PstI-HindIII fragment of recombinant pCT161/18 (representing the 5' end of the cloned gene), we isolated and characterized a C. trachomatis homolog of the ribosomal protein L6 gene of E. coli. Sequence analysis of an 1,194-bp EcoRI-SacI fragment that encodes chlamydial L6 (designated CtaL6e) revealed a 552-bp open reading frame comprising 183 amino acids and encodes a protein with a molecular weight of 19,839. Interestingly, complete gene homology between C. trachomatis serovars L2 and J, each of which exists as a single copy per genome, was observed. Expression of a plasmid-encoded gene product is dependent on the lac promoter, since no product was obtained if the open reading frame was oriented in opposition to the lac promoter. Immunoblotting of purified ribosomes revealed functional, as well as antigenic, homology between the E. coli and C. trachomatis ribosomal L6 proteins.  相似文献   

12.
The human pathogen Chlamydia trachomatis is an obligate intracellular bacterium, characterized by a developmental cycle that alternates between the infectious, extracellular elementary bodies and intracellular, metabolically active reticulate bodies. The cellular immune effector interferon gamma (IFN-gamma) inhibits chlamydial multiplication in human epithelial cells by induction of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase. IFN-gamma causes persistent C. trachomatis serovar A infections with atypical reticulate bodies that are unable to redifferentiate into elementary bodies and show diminished expression of important immunogens, but not of GroEL. However, the sensitivity to IFN-gamma varies among serovars of C. trachomatis. In our previous study significant IFN-gamma-specific, but tryptophan reversible, induction of proteins in C. trachomatis A and L2 with molecular masses of approximately 30 and 40 kDa was observed on 2D-gels. The 30-kDa protein from C. trachomatis L2 migrated with a significantly lower molecular weight in C. trachomatis A. In this paper we include C. trachomatis B, C and D in our investigations and identify the proteins as alpha- and beta-subunits of the chlamydial tryptophan synthase using matrix-assisted laser desorption/ionization mass spectrometry. DNA sequencing of the trpA genes from C. trachomatis A and C shows that the TrpA in these serovars is a 7.7-kDa truncated version of C. trachomatis D and L2 TrpA. The truncation probably impairs the TrpA activity, thus elucidating a possible molecular mechanism behind variations in the pathogenesis of C. trachomatis serovars.  相似文献   

13.
A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state.  相似文献   

14.
A collaborative study, initiated under the auspices of the Health Industry Manufacturers Association (HIMA), was designed to establish the relationship of Escherichia coli O55:B5 endotoxin (the control standard endotoxin of HIMA and the Food and Drug Administration's Office of Medical Devices) to the U.S. National Reference Standard Endotoxin and to two internationally used control standard endotoxins. By using two Limulus amoebocyte lysate test systems, it was established that the E. coli O55:B5 endotoxin lot originally used by HIMA and the Office of Medical Devices to establish Limulus amoebocyte lysate release test criteria for pyrogen testing of medical devices contains approximately 4.5 endotoxin units (EU) per ng. Thus, the 1.0-ng/kg endotoxin dose limit currently established for medical devices is approximately the same as the 5.0-EU/kg endotoxin limit (on an activity basis) established by several other Food and Drug Administration agencies for human and animal parenteral drugs and biological products.  相似文献   

15.
Sepsis, a leading cause of death worldwide, involves proinflammatory responses and inefficient bacterial clearance. Phagocytic cells play a crucial part in the prevention of sepsis by clearing bacteria through host innate receptors. Here we show that the FcRgamma adaptor, an immunoreceptor tyrosine-based activation motif (ITAM)-bearing signal transduction subunit of the Fc receptor family, has a deleterious effect on sepsis. FcRgamma(-/-) mice show increased survival during peritonitis, owing to markedly increased E. coli phagocytosis and killing and to lower production of the proinflammatory cytokine tumor necrosis factor (TNF)-alpha. The FcRgamma-associated receptor that inhibits E. coli phagocytosis is FcgammaRIII (also called CD16), and its absence protects mice from sepsis. FcgammaRIII binds E. coli, and this interaction induces FcRgamma phosphorylation, recruitment of the tyrosine phosphatase SHP-1 and phosphatidylinositide-3 kinase (PI3K) dephosphorylation. Decreased PI3K activity inhibits E. coli phagocytosis and increases TNF-alpha production through Toll-like receptor 4. We identified the phagocytic receptor negatively regulated by FcRgamma on macrophages as the class A scavenger receptor MARCO. E. coli-FcgammaRIII interaction induces the recruitment of SHP-1 to MARCO, thereby inhibiting E. coli phagocytosis. Thus, by binding FcgammaRIII, E. coli triggers an inhibitory FcRgamma pathway that both impairs MARCO-mediated bacterial clearance and activates TNF-alpha secretion.  相似文献   

16.
A collaborative study, initiated under the auspices of the Health Industry Manufacturers Association (HIMA), was designed to establish the relationship of Escherichia coli O55:B5 endotoxin (the control standard endotoxin of HIMA and the Food and Drug Administration's Office of Medical Devices) to the U.S. National Reference Standard Endotoxin and to two internationally used control standard endotoxins. By using two Limulus amoebocyte lysate test systems, it was established that the E. coli O55:B5 endotoxin lot originally used by HIMA and the Office of Medical Devices to establish Limulus amoebocyte lysate release test criteria for pyrogen testing of medical devices contains approximately 4.5 endotoxin units (EU) per ng. Thus, the 1.0-ng/kg endotoxin dose limit currently established for medical devices is approximately the same as the 5.0-EU/kg endotoxin limit (on an activity basis) established by several other Food and Drug Administration agencies for human and animal parenteral drugs and biological products.  相似文献   

17.
Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn's lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures.  相似文献   

18.
We have investigated the ability of lipopolysaccharides (LPS) and lipoteichoic acids (LTA) to induce rat peritoneal mast cells to degranulation and histamine release, and to cysteinyl leukotriene (LT) generation. We have stated that LPS Salmonella Enteritidis, LPS Escherichia coli O111:B4 and LPS E. coli O55:B5 did not activate rat mast cells to degranulation and histamine release. However, LPSs induced LT synthesis and secretion; the strongest stimulant to generation of LT was LPS E. coli O55:B5 (concentration of LT in supernatant was 830.5 +/-15.2 pg/ml). We have also observed that LTA Staphylococcus aureus and LTA Bacillus subtilis stimulated rat mast cells to degranulation and histamine secretion, even though the percentage of the releases histamine was relatively low (10.0 +/- 1.4 and 10.4 +/- 5.4 at antigen concentration, respectively). At the same time, LTA of both of the bacterial species strongly activate LT generation by mast cells (concentrations of LT in supernatants were 777.9 +/- 11.2 pg/ml and 734.0 +/- 38.3 pg/ml, respectively, at the antigen concentration 50 ng/ml). Our results have shown that LPS oraz LTA activate rat mast cells to secretion of proinflammatory mediators.  相似文献   

19.
Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by complementation.  相似文献   

20.
The gene prmC, encoding the putative S-adenosyl-L-methionine (AdoMet)-dependent methyltransferase (MTase) of release factors (RFs) of the obligate intracellular pathogen Chlamydia trachomatis, was functionally analyzed. Chlamydial PrmC expression suppresses the growth defect of a prmC knockout strain of Escherichia coli K-12, suggesting an interaction of chlamydial PrmC with E. coli RFs in vivo. In vivo methylation assays carried out with recombinant PrmC and RFs of chlamydial origin demonstrated that PrmC methylates RFs within the tryptic fragment containing the universally conserved sequence motif Gly-Gly-Gln. This is consistent with the enzymatic properties of PrmC of E. coli origin. We conclude that C. trachomatis PrmC functions as an N5-glutamine AdoMet-dependent MTase, involved in methylation of RFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号