首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The development of the epidermis of the nematode worm Caenorhabditis elegans illustrates many common processes of epithelial morphogenesis. In the worm, these morphogenetic movements have been described with single-cell resolution, and the roles of individual cells have been probed in laser killing experiments. Genetic dissection is yielding insights into the molecular mechanisms of these complex morphogenetic processes.  相似文献   

2.
The gonad in Caenorhabditis elegans is an important model system for understanding complex morphogenetic processes including cellular movement, cell fusion, cell invasion and cell polarity during development. One class of signaling proteins known to be critical for the cellular events underlying morphogenesis is the Rho family GTPases, particularly RhoA, Rac and Cdc42. In C. elegans orthologues of these genes have been shown to be important for gonad development. In our current study we have extended those findings by examining the patterns of 5′ cis-regulatory element (5′CRE) activity associated with nineteen putative guanine nucleotide exchange factors (GEFs) encoded by the C. elegans genome predicted to activate Rho family GTPases. Here we identify 13 RhoGEF genes that are expressed during gonadogenesis and characterize the cells in which their 5′CREs are active. These data provide the basis for designing experiments to examine Rho GTPase activation during morphogenetic processes central to normal gonad development.  相似文献   

3.
Cell–matrix interactions brought about by the activity of integrins and laminins maintain the polarized architecture of epithelia and mediate morphogenetic interactions between apposing tissues. Although the polarized localization of laminins at the basement membrane is a crucial step in these processes, little is known about how this polarized distribution is achieved. Here, in Drosophila, we analyse the role of the secreted serine protease‐like protein Scarface in germ‐band retraction and dorsal closure—morphogenetic processes that rely on the activity of integrins and laminins. We present evidence that scarface is regulated by c‐Jun amino‐terminal kinase and that scarface mutant embryos show defects in these morphogenetic processes. Anomalous accumulation of laminin A on the apical surface of epithelial cells was observed in these embryos before a loss of epithelial polarity was induced. We propose that Scarface has a key role in regulating the polarized localization of laminin A in this developmental context.  相似文献   

4.
5.
6.
Based on study of isolated neurons of molluscs Lymnaea stagnalis, elementary mechanisms of motility of living neurons have been analyzed. With aid of these studies, an attempt is made at explaining mechanisms of the cellular morphogenetic processes of evolution of simple nervous systems: exit of neuroepithelial cells from the layer of external epithelium, transformation of sensory bipolar cells into the associative ones, migration of neurons, formation of diffuse plexus and its conversion into the plexus-ganglion system, regularities of formation of ganglia and synganglia. Use of the culture of dissociated neurons is characterized as a novel direction of evolutionary neuromorphology.  相似文献   

7.
Summary A molecular marker has been identified in embryos of the cockroach, Periplaneta americana, that is localized among epithelial cells to those directly involved in morphogenesis. A monoclonal antibody has been developed that selectively binds to epithelial cells undergoing any of three very different morphogenetic movements-invagination, evagination or epiboly. Neighboring cells not involved in these developmental processes are not labeled by the antibody. The antigen is transiently present on the cells for a period just prior to and during the morphogenetic activity. It is localized on the apical surface of the cells. The spatial, temporal and subcellular distributions of antibody binding during development indicate a role for the antigen in epithelial morphogenesis different from that of any previously described molecule.  相似文献   

8.
Cell-cell adhesion via the ECM: integrin genetics in fly and worm.   总被引:1,自引:0,他引:1  
N H Brown 《Matrix biology》2000,19(3):191-201
Integrins are essential for the development of the two genetically tractable invertebrate model organisms, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Just two integrins are present in C. elegans: one putative RGD binding integrin alphapat-2betapat-3, corresponding to Drosophila alphaPS2betaPS and vertebrate alpha5beta1, alphaVbeta1 and alpha8beta1, and one putative laminin binding integrin alphaina-1betapat-3, corresponding to Drosophila alphaPS1betaPS and vertebrate alpha3beta1, alpha6beta1 and alpha7beta1. In this review, the function of this minimal set of integrins during the development of these two invertebrates is compared. Despite the differences in bodyplan and developmental strategy, integrin adhesion to the extracellular matrix is required for similar processes: the formation of the link that translates muscle contraction into movement of the exoskeleton, cell migration, and morphogenetic interactions between epithelia. Other integrin functions, such as regulation of gene expression, have not yet been experimentally demonstrated in both organisms. Additional proteins have been characterised in each organism that are essential for integrin function, including extracellular matrix ligands and intracellular interacting proteins, but so far different proteins have been found in the two organisms. This in part represents the fact that the characterisation of the full set of interacting proteins is not complete in either system. However, in other cases different proteins appear to be used for similar functions in the two animals. The continued use of genetic approaches to identify proteins required for integrin function in these two model organisms should lead to the identification of the minimal set of conserved components that form integrin adhesive structures.  相似文献   

9.
Genetic analysis has been performed to reveal vital genes around two puffs, a late 62C puff and an early-late 62E puff. Their roles in hormonal regulatory mechanisms have been estimated. A locus represented by four lethal mutations has been found in the vicinity of the 62E puff. The mutants display disturbed puffing, which suggests the involvement of this locus in hormonal regulatory mechanisms. In the 62C puff region, 26 mutations have been found that proved to be allelic to mutations in theD-Titin gene. The giant D-Titin gene is essential for the sarcomeric organization of striated muscles. According to the results of in situ hybridization with polytene chromosomes, the D-Titin gene occupies the entire 62C puff. The phenotypic characteristics of the novel mutants suggest that this protein is polyfunctional, and its role is not restricted to processes in the muscular tissue. It may also be involved in the morphogenesis of leg imaginal disks, and it is necessary for condensation and separation of sister chromatids during mitosis. Mutations in the ecdysone-induced BR-C and E74 genes cause disturbances similar to those found in this study. In addition, mutations of these genes can affect the D-Titin gene activity, which suggests that the three genes are involved in similar morphogenetic and myogenetic processes.  相似文献   

10.
Cadherins are a family of cell surface glycoproteins which mediate cell-cell adhesion by a Ca2+-dependent mechanism. Results from in vitro studies with cadherin-transfected cell lines show that cadherins preferentially bind to each other in a homophilic fashion. In the developing vertebrate brain, at least 10 cadherins are found. Some of these cadherins are expressed in a restricted fashion in particular developing brain nuclei and neural circuits. Based on these results, specific morphogenetic roles for cadherins during CNS development have been proposed. This review focuses on the possible role of cadherin-mediated sorting and aggregation of early neurons and neurites in the formation of brain nuclei, fiber tracts, and neural circuits. Moreover, at least 1 cadherin is also expressed in a segmental ("neuromeric") fashion in the early chicken forebrain, suggesting that this cadherin regulates developmental processes involved in the transformation from the neuromeric organization of the early neuroepithelium to the functional organization of the mature brain.  相似文献   

11.
Body fragmentation, in some animal groups, is a mechanism for survival and asexual reproduction. Lumbriculus variegatus (Müller, 1774), an aquatic oligochaete worm, is capable of regenerating into complete individuals from small body fragments following injury and reproduces primarily by asexual reproduction. Few studies have determined the cellular mechanisms that underlie fragmentation, either regenerative or asexual. We utilized boric acid treatment, which blocks regeneration of segments in amputated fragments and blocks architomic fission during asexual reproduction, to investigate mechanistic relationships and differences between these two modes of development. Neural morphallaxis, involving changes in sensory fields and giant fiber conduction, was detected in amputated fragments in the absence of segmental regeneration. Furthermore, neural morphallactic changes occurred as a result of developmental mechanisms of asexual reproduction, even when architomy was prevented. These results show that fragmentation in L. variegatus, during injury or asexual reproduction, employs developmental and morphallactic processes that can be mechanistically dissociated by boric acid exposure. In regeneration following injury, compensatory morphallaxis occurred in response to fragmentation. In contrast, anticipatory morphallaxis was induced in preparation for fragmentation during asexual reproduction. Thus, various forms of regeneration in this lumbriculid worm can be activated independently and in different developmental contexts.  相似文献   

12.
Strongyles are commonly reported parasites in studies of primate parasite biodiversity. Among them, nodule worm species are often overlooked as a serious concern despite having been observed to cause serious disease in nonhuman primates and humans. In this study, we investigated whether strongyles found in Bornean primates are the nodule worm Oesophagostomum spp., and to what extent these parasites are shared among members of the community. To test this, we propose two hypotheses that use the parasite genetic structure to infer transmission processes within the community. In the first scenario, the absence of parasite genetic substructuring would reflect high levels of parasite transmission among primate hosts, as primates’ home ranges overlap in the study area. In the second scenario, the presence of parasite substructuring would suggest cryptic diversity within the parasite genus and the existence of phylogenetic barriers to cross‐species transmission. By using molecular markers, we identify strongyles infecting this primate community as O. aculeatum, the only species of nodule worm currently known to infect Asian nonhuman primates. Furthermore, the little to no genetic substructuring supports a scenario with no phylogenetic barriers to transmission and where host movements across the landscape would enable gene flow between host populations. This work shows that the parasite's high adaptability could act as a buffer against local parasite extinctions. Surveys targeting human populations living in close proximity to nonhuman primates could help clarify whether this species of nodule worm presents the zoonotic potential found in the other two species infecting African nonhuman primates.  相似文献   

13.
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.  相似文献   

14.
It has been suggested that hepatocytes have the ability to form bile ductal structures during normal development and in various pathological conditions of the liver. In the present study, we attempted to establish anin vitromodel of ductal morphogenesis of hepatocytic cells by combining an aggregate culture and a type I collagen gel culture. When spheroidal aggregates of rat or mouse primary hepatocytes were embedded within the collagen gel matrix and then cultured with a medium containing a fibroblast-conditioned medium, the aggregates extended many dendritic processes composed of a trabecular arrangement of cells. Dendritic morphogenesis was also seen in embedded aggregates of immortal liver epithelial cell lines, which spontaneously emerged during long-term cultures of mouse primary hepatocytes. A similar morphogenesis was induced by the presence of insulin in the medium. Although epidermal growth factor (EGF) and hepatocyte growth factor (HGF) showed only a small effect on the morphogenesis of most of the hepatocytic cells when used alone, these factors, especially EGF, enhanced the morphogenetic effect of insulin. Electron microscopical observations revealed luminal structures lined by microvilli within these dendritic processes, indicating ductal differentiation. Immunocytochemically, the dendritic processes were positive for cytokeratin 19, a marker for bile duct cells. On the other hand, an H-ras-transformed mouse liver epithelial cell line and rat hepatocellular carcinoma cell lines did not demonstrate the organized morphogenesis. Our results indicate that hepatocytic cells can produce bile duct-like structures in the presence of the type I collagenous matrix and soluble morphogenetic factors.  相似文献   

15.
Free-swimming Annelida occasionally occur in very high densities in WWTPs (WasteWater Treatment Plants) and are nowadays applied for waste sludge reduction, but their growth is uncontrollable. In order to get more insight in the population dynamics of these free-swimming Annelida, and relate their presence to process characteristics, nine ATs (Aeration Tanks) of four Dutch WWTPs were regularly sampled over a 2.5-year period. For each species, peak periods in worm population growth were defined and population doubling times and half-lives calculated. Peak periods and doubling times were compared to those in natural systems. Process characteristics were obtained from the plant operators and related to the worm populations by multivariate analysis for the first time in large-scale WWTPs. The species composition in the WWTPs was limited and the most abundant free-swimming Annelida were in decreasing order Nais spp., Aeolosoma hemprichi, Pristina aequiseta, Aeolosoma variegatum, Chaetogaster diastrophus, and Aeolosoma tenebrarum.This latter species had never been found before in WWTPs. Worm absence sometimes coincided with the presence of anoxic zones, but this was possibly overcome by higher temperatures in the WWTPs. Worms were present all year round, even in winter, but no yearly recurrences of population peaks were observed, probably as a result of stable food supply and temperature, and the lack of predation in the WWTPs. Peak periods were similar between the ATs of each WWTP. The duration of the peak periods was on average 2–3 months for each species and the population doubling times in the peak periods were short (on average 2–6 days), which also corresponds to a stable favorable environment. The disappearance of worm populations from the WWTPs was presumably caused by declining asexual reproduction and subsequent removal with the waste sludge. Multivariate analysis indicated that 36% of the variability in worm populations was due to spatial and temporal patterns only. In addition, no more than 4% of the variability in worm populations was related to variations in process characteristics only and worm presence was usually associated with better sludge settleability. In conclusion, our data from large-scale WWTPs suggest that growth of free-swimming Annelida still seems uncontrollable and that their effects on treatment processes are unclear, which makes stable application in wastewater treatment for sludge reduction difficult. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   

16.
It has become increasingly apparent that the high molecular mass glycosaminoglycan, hyaluronan (HA), is required for many morphogenetic processes during vertebrate development. This renewed understanding of the various developmental roles for HA, has come about largely through the advent of gene targeting approaches in the mouse. To date, mutations have been engineered in the enzymes responsible for biosynthesis and degradation and for those proteins that bind to HA within the extracellular matrix and at the cell surface. Collectively, the phenotypes resulting from these mutations demonstrate that HA is critical for normal mammalian embryogenesis and for various processes in postnatal and adult life (Table 1). In this article we will review our progress in understanding the biological functions for HA through targeted mutagenesis of the HA synthase 2 (Has2) and 3 (Has3) genes. Data that has been obtained from a conventional targeted disruption of the Has2 gene, is presented in an accompanying review by Camenisch and McDonald. More specifically, in this review we will provide an overview of the conditional gene targeting strategy being used to create tissue-specific deficiencies in Has2 function, along with our progress in understanding the role for Has3-dependent HA biosynthesis. Published in 2003.  相似文献   

17.
Invertebrate herbivore outbreaks have important impacts on system biogeochemical cycling, but these effects have been poorly documented in African savanna ecosystems. In semi‐arid African savannas, outbreaks of the lepidopteran Imbrasia belina (mopane worm) affect discrete patches of the dominant Colophospermum mopane trees; larvae may completely defoliate trees for up to six weeks during each of the early and late growing seasons. We studied the impact of mopane worm outbreaks on the availability of nitrogen (N), phosphorus (P), and potassium (K) within mopane savanna by quantifying major nutrient pools in defoliated and non‐defoliated savanna patches, including leaves, leaf litter, worm frass, and the soil beneath trees. Within an outbreak area, approximately 44 percent of trees were infested, supporting ~29,000 worms/ha, leading to ~640 kg/ha dry weight frass deposition at 1.4 g of frass/day‐individual (fourth or fifth instar), compared with an average 1645 kg/ha dry weight of leaf on trees most of which should be deposited by litterfall at the end of the growing season. Frass had twofold higher P, 10 percent higher K, but equivalent N content than litter. Taking frass and litter deposition together, the N, P, and K contents added due to the outbreak event at our study site were 0.88, 5.8, and 2.8 times those measured in non‐outbreak patches, a pattern which was reflected in the nutrient contents of soil surfaces beneath defoliated trees. Invertebrate herbivory appears to be an important driver for mopane savanna but has been largely neglected.  相似文献   

18.
19.
Analysis is presented of long-term data obtained in investigation of the effects of weak influences on morphogenetic processes in invertebrates (regeneration of planarians Dugesia (Girardia) tigrina and postembryonic development of insects, the grain beetle Tenebrio molitor). Weak physical and chemical factors were used: electromagnetic radiation, constant, alternating, and combined magnetic fields, and low concentrations of solutions of neuropeptides. It is shown that these influences are characterized by instability and opposite directions (from stimulatory to inhibitory). The dependence of the effects on external factors and the course of internal processes was established.  相似文献   

20.
Freshwater sponges of the family Spongillidae reproduce sexually through formation of a parenchymula larva. The cytochemical characteristics of parenchymula larval metamorphosis — beginning with the blastula and terminating with the motile escape stage — for the spongillid Eunapius fragilis (Leidy) have been defined using both absorption and fluorescent cytochemical methods, particularly those demonstrating protein end-groups. Morphogenesis of the parenchymula larva of E. fragilis involves the interrelated processes of cytodifferentiation and mobilization of reserve materials. Larval development has been categorized into five stages, from blastula (stage I) through the escape stage (stage V). Parenchymula development is characterized by morphogenetic precocity, a fact influencing the rate of mobilization of cytoplasmic reserves, cytodifferentiation, and the fate of individual cell types. With attainment of the stage V parenchymula, the larva is, essentially, a mobile adult sponge exhibiting flagellated chambers, canal systems, a well defined connective tissue stroma, a diverse cell population consisting of specialized elements and a totipotent archeocyte reserve, and a terminal epitheliocyte line. The present study recognizes differences in development within the spongillids as well as within more remote poriferan taxa — emphasizing the need for detiled understanding of particular processes in individual species before proposing major generalizations about development in this ancient but evolutionally specialized group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号