首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energy-dependent, respiration-supported uptake and the uncoupler- or Na+-induced release of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain were investigated, using as indicators radioisotopes (45Ca and 54Mn), proton ejection, oxygen consumption, nicotinamide nucleotide oxidation-reduction and, in the case of Ca2+, the metallochromic dye Arsenazo III. Ca2+ uptake in the presence of Pi was rapid in mitochondria from liver and brain, and less rapid in those from heart. Mn2+ uptake was much slower than that of Ca2+ in liver and heart, but only slightly slower in brain. When added together, Ca2+ accelerated the uptake of Mn2+, and Mn2+ retarded the uptake of Ca2+, by mitochondria from all three tissues. When Mn2+ was present during Ca2+ uptake, its own uptake remained accelerated even after Ca2+ uptake was terminated. Mg2+, which was not taken up, inhibited Ca2+ uptake by mitochondria from all three tissues, and, when present during Ca2+ uptake, accelerated the subsequent uptake of Mn2+. The uncoupler CCCP induced a release of both Ca2+ and Mn2+ from all three sources of mitochondria; yet, release of Mn2+ took place only in the absence of Pi. The release followed the same pattern as the uptake, i.e., Ca2+ accelerated the release of Mn2+ and Mn2+ retarded the release of Ca2+. Na+ induced a release of both Ca2+ and Mn2+ from heart and brain but not from liver mitochondria; again, Mn2+ release occurred only in the absence of Pi. The Na+-induced release of Ca2+ was inhibited by Mn2+, but the Na+-induced release of Mn2+ was not accelerated by Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Microalgal-facilitated bacterial oxidation of manganese   总被引:1,自引:0,他引:1  
In the presence of unicellular microalgae, bacterial manganese oxidation was increased by up to ten times the rate produced by bacterial oxidation alone. Azide-poisoned controls demonstrated that the manganese-oxidizing bacteria were active in the algal-bacterial oxidation of manganese. Scanning electron microscopy showed that oxide formation occurred in a number of structurally different deposits on the surface of the alga. Studies involving algal cell fractionation showed that bacterial manganese oxidation was facilitated by the algal cell wall, possibly via Mn2+ adsorption. Variations in growth conditions had an effect on algal-bacterial oxide formation and composition. High nutrient (yeast extract, peptone and/or sucrose) levels favored microbial growth but lowered oxide formation, whereas optimal levels of manganese oxide formation required minimal media. High concentrations of either organic nutrients or mineral salts promoted manganese carbonate precipitation.  相似文献   

3.
Autopsied liver tissue samples collected from 42 males and 31 females were analyzed for copper, manganese and zinc using atomic absorption spectrometry (AAS). With the exception of two liver samples for which the copper levels were determined to be 74.8 and 104.0 g/g (dry weight), hepatic copper concentrations were found to range from 1.7 to 32.4 g/g with a mean concentration of 14.2 g/g and standard deviation of 7.0 g/g. Manganese concentrations (with the exception of one sample having 12.9 g/g) ranged from 0.22 to 4.6 g/g with a mean of 2.26 ± 1.00 g/g. Hepatic zinc levels averaged 118.3 ± 44.4 g/g and ranged from 38.5 to 231.3 g/g. There were no apparent trends for the levels of any metals versus age nor were there any differences in average hepatic metal concentrations for males and females. © Rapid Science 1998.  相似文献   

4.
We show that tetraphenylphosphonium inhibits oxidation of palmitoylcarnitine, pyruvate, malate, 2-oxoglutarate and glutamate in heart mitochondria in the range of concentration (1–5 µM) commonly used for the determination of mitochondrial membrane potential. The inhibition of 2-oxoglutarate (but not other substrate) oxidation by tetraphenylphosphonium is dependent on the concentration of 2-oxoglutarate and on extramitochondrial free calcium, and the kinetic plots are consistent with a mixed type of inhibition. Our results indicate that tetraphenylphosphonium interacts with enzymes, specifically involved in the oxidation of 2-oxoglutarate, most possibly, 2-oxoglutarate dehydrogenase.  相似文献   

5.
Paul E. Kepkay 《Hydrobiologia》1985,128(2):135-142
Aquatic macrophytes in the Concretion Cove area of Lake Charlotte, Nova Scotia, Canada appear to restrict microbial manganese oxidation to the production of dispersed, microscopic oxides within sediments. When macrophyte roots are not present in the sediments, large ferromanganese concretions are found at the sediment surface. Macrophyte roots and the manganese oxidizers may have also played a role in the restriction of nitrification to deeper in the sediments.  相似文献   

6.
Using rat liver mitochondria, as model systems, we have examined the ability of the natural compound and the food-flavoring agent, vanillin to protect membranes against oxidative damage induced by photosensitization at concentrations normally used in food preparations. Vanillin, at a concentration of 2.5 mmol/L, has afforded significant protection against protein oxidation and lipid peroxidation in hepatic mitochondria induced by photosensitization with methylene blue plus light. The effect observed was both time- and concentration-dependent. The inhibitory effect is similar to ascorbic acid and the singlet oxygen quencher, diazabicyclo[2.2.2]octane (DABCO) but less effective than sodium azide and glutathione. Examination of possible mechanisms responsible for the observed protection, showed that vanillin has a significant ability to quench singlet oxygen (1O2), a reactive species responsible for damage induced during photosensitization by Type II mechanism. Hence, this flavoring compound, due to its antioxidant ability, may have potential to prevent oxidative damage to membranes in mammalian tissues and thereby the ensuing diseased states.  相似文献   

7.
Sulphite oxidation by mitochondria prepared from green pea epicotyls had a higher Km than did the sulphite oxidation of mitochondria prepared from etiolated pea epicotyls. Mitochondrial sulphite oxidation from green and etiolated tissues was inhibited by cyanide but not by azide, rotenone, antimycin A or oligomycin. Mitochondria from green and etiolated tissues were able to oxidize glyoxal-bisulphite, but not as effectively as sulphite.  相似文献   

8.
The goal of this project was to characterize deoxypyrimidine salvage pathways used to maintain deoxynucleoside triphosphate pools in isolated brain mitochondria and to determine the extent that antiviral pyrimidine analogs utilize or affect these pathways. Mitochondria from rat brains were incubated in media with labeled and unlabeled deoxynucleosides and deoxynucleoside analogs. Products were analyzed by HPLC coupled to an inline UV monitor and liquid scintillation counter. Isolated mitochondria transported thymidine and deoxycytidine into the matrix, and readily phosphorylated both of these to mono-, di-, and tri-phosphate nucleotides. Rates of phosphorylation were much higher than rates observed in mitochondria from heart and liver. Deoxyuridine was phosphorylated much more slowly than thymidine and only to dUMP. 3'-azido-3'-deoxythymidine, zidovudine (AZT), an antiviral thymidine analog, was phosphorylated to AZT-MP as readily as thymidine was phosphorylated to TMP, but little if any AZT-DP or AZT-TP was observed. AZT at 5.5 ± 1.7 μM was shown to inhibit thymidine phosphorylation by 50%, but was not observed to inhibit deoxycytidine phosphorylation except at levels > 100 μM. Stavudine and lamivudine were inert when incubated with isolated brain mitochondria. The kinetics of phosphorylation of thymidine, dC, and AZT were significantly different in brain mitochondria compared to mitochondria from liver and heart.  相似文献   

9.
10.
11.
Oscillatory movements of ions across the inner membrane of liver and heart mitochondria in vitro have been investigated. Our results indicate that the inverse of the square of oscillatory period is linear with respect to (a) the permeant cation concentration; (b) the inverse of the permeant weak acid anion concentration, and (c) the rate of energyproduction. It has been shown that various factors contribute to damping of the oscillations. These factors include: substrate utilization, mitochondrial deterioration, imperfect mitochondrial synchronization, and, possibly, an oscillatory mechanism which dictates damping. An increased period length and extensive damping of oscillations occurs at a critical mitochondrial protein concentration (less than 0.6 mg protein/ml). Such inhibition can be reversed by the addition of cytochrome c.  相似文献   

12.
In this work, an attempt was made to identify the reasons of impaired long-chain fatty acid utilization that waspreviously described in volume-overloaded rat hearts. The most significant data are the following: (1) The slowing down of long-chain fatty acid oxidation in severely hypertrophied hearts cannot be related to a feedback inhibition of carnitine palmitoyltransferase I from an excessive stimulation of glucose oxidation since, because of decreased tissue levels of L-carnitine, glucose oxidation also declines in volume-overloaded hearts. (2) While, in control hearts, the estimated intracellular concentrations of free carnitine are in the range of the respective Km of mitochondrial CPT I, a kinetic limitation of this enzyme could occur in hypertrophied hearts due to a 40% decrease in free carnitine. (3) However, the impaired palmitate oxidation persists upon the isolation of the mitochondria from these hearts even in presence of saturating concentrations of L-carnitine. In contrast, the rates of the conversion of both palmitoyl-CoA and palmitoylcarnitine into acetyl-CoA are unchanged. (4) The kinetic analyses of palmitoyl-CoA synthase and carnitine palmitoyltransferase I reactions do not reveal any differences between the two mitochondrial populations studied. On the other hand, the conversion of palmitate into palmitoylcarnitine proves to be substrate inhibited already at physiological concentrations of exogenous palmitate. The data presented in this work demonstrate that, during the development of a severe cardiac hypertrophy, a fragilization of the mitochondrial outer membrane may occur. The functional integrity of this membrane seems to be further deteriorated by increasing concentrations of free fatty acids which gives rise to an impaired functional cooperation between palmitoyl-CoA synthase and carnitine palmitoyltransferase I. In intact myocardium, the utilization of the generated in situ palmitoyl-CoA can be further slowed down by decreased intracellular concentrations of free carnitine.  相似文献   

13.
A great number of important chemical reactions that occur in the environment are microbially mediated. In order to understand the kinetics of these reactions it is necessary to develop methods to directly measure in situ reaction rates and to develop models to help elucidate the mechanisms of microbial catalysis. The oxidation of Mn(II) in a zone above the O2/H2S interface in Saanich Inlet, B.C., Canada is one such reaction. We present here a method by which in situ rates of microbial Mn(II) oxidation are measured and a model based on our experimental results to describe the general mechanism of Mn(H) oxidation. We propose a two step process in which Mn(II) is first bound by a site on the bacterial surface and then oxidized. The model is analogous to the Langmuir isotherm model for surface catalyzed gas reactions or the Michaelis-Menten model for enzyme kinetics. In situ Mn(II) oxidation rates were measured during five cruises to Saanich Inlet during the summers of 1983 and 1984. We use the model to calculate the apparent equilibrium binding constant (Ks 0.18 M), the apparent half saturation constant for biological Mn(H) oxidation (Km = 0.22 to 0.89 M), the maximum rate of Mn(II) oxidation (Vmax = 3.5 to 12.1 nM·h-1) and the total microbial surface binding site concentration ( E 51 nM). Vmax for Mn(II) oxidation agrees with the rates calculated from the value of the flux of Mn(II) to the oxidizing zone using the Mn(II) gradient and estimates of the eddy diffusion coefficient. This consistancy verifies our methodology and indicates that the rate of Mn(II) oxidation is nearly equal to the (Vmax for the reaction. We conclude that in this environment the Mn(II) oxidation rate is more a function of the total number of surface binding sites than the Mn(H) concentration.Contribution #1601 from the School of Oceanography, Univ. of Washingtoncorresponding author  相似文献   

14.
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, -ketoglutarate, and glutamate during palmitate oxidation, and also by assaying14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase), Palmitate oxidation also resulted in -ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase14C-products and formation of -ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or -ketoglutarate was added exogenously. Exogenous -ketoglutarate was found to decrease14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added -ketoglutarate, however, -ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of -ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for -ketoglutarate in the same pool, and (b) the pool of -ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.  相似文献   

15.
The efflux of individual short-chain and medium-chain acylcarnitines from rat liver, heart, and brain mitochondria metabolizing several substrates has been measured. The acylcarnitine efflux profiles depend on the substrate, the source of mitochondria, and the incubation conditions. The largest amount of any acylcarnitine effluxing per mg of protein was acetylcarnitine produced by heart mitochondria from pyruvate. This efflux of acetylcarnitine from heart mitochondria is almost 5 times greater with 1 mM than 0.2 mM carnitine. Apparently the acetyl-CoA generated from pyruvate by pyruvate dehydrogenase is very accessible to carnitine acetyltransferase. Very little acetylcarnitine effluxes from heart mitochondria when octanoate is the substrate except in the presence of malonate. Acetylcarnitine production from some substrates peaks and then declines, indicating uptake and utilization. The unequivocal demonstration that considerable amounts of propionylcarnitine or isobutyrylcarnitine efflux from heart mitochondria metabolizing alpha-ketoisovalerate and alpha-keto-beta-methylvalerate provides evidence for a role (via removal of non-metabolizable propionyl-CoA or slowly metabolizable acyl-CoAs) for carnitine in tissues which have limited capacity to metabolize propionyl-CoA. These results also show propionyl-CoA must be formed during the metabolism of alpha-ketoisovalerate and that extra-mitochondrial free carnitine rapidly interacts with matrix short-chain aliphatic acyl-CoA generated from alpha-keto acids of branched-chain amino acids and pyruvate in the presence and absence of malate.  相似文献   

16.
Effect of biliary ligation on manganese accumulation in rat brain   总被引:3,自引:0,他引:3  
Neurologic and radiologic disorders have been reported to occur in miners inhaling manganese (Mn)-laden dust and in humans receiving long-term parenteral nutrition. These abnormalities have been attributed to Mn intoxication because of elevated serum Mn concentrations. Because the liver, by way of the bile, is the major route of Mn excretion, it is possible that anything that decreases biliary excretion could increase accumulation of Mn in the brain. The purpose of this study was to determine whether biliary ligation would increase Mn accumulation in the brain of rats that were exposed to deficient or adequate amounts of dietary manganese. The first experiment had a 2 x 3 factorial design, two levels of Mn (0 or 45 μg/g diet) and three surgical treatments (control, sham, or bile-ligation). Animals were sacrificed 10 d after being fed54Mn. In experiment 2, animals that had a sham operation or bile-ligation were sacrificed at 8 time points after being injected intraportally with54Mn complexed to albumin. The biliaryligated animals had a significantly (p < 0.001) smaller percentage of the54Mn in their brains (when expressed as a percentage of whole animal54Mn) than the sham-operated animals. Mn deficiency had a similar effect. However, we did observe an increased accumulation of the radioisotope in the brain over time. Therefore, in short-term studies, biliary-ligated rats do not appear to be a good model for Mn accumulation in the brains of people with cholestatic liver disease. The U.S. Department of Agriculture, Agriculture Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

17.
Neurological disorders similar to parkinsonian syndrome and signal hyperintensity in brain on T1-weighted magnetic resonance (MR) images have been reported in patients receiving long-term total parenteral nutrition (TPN). These symptoms have been associated with manganese (Mn) depositions in brain. Although alterations of signal intensity on T1-weighted MR images in brain and of Mn concentration in blood are theoretically considered good indices for estimating Mn deposition in brain, precise correlations between these parameters have not been demonstrated as yet. Male Sprague-Dawley rats received TPN with 10-fold the clinical dose of the trace element preparation (TE-5) for 7 d. At 0, 2, 4, 6, and 8 wk post-TPN, the cortex, striatum, midbrain, and cerebellum were evaluated by MR images, and Mn concentration in blood and Mn content in these brain sites were measured by atomic absorption spectrometry. Immediately after TPN termination, signal hyperintensity in brain sites and elevated Mn content in blood and brain sites were observed. These values recovered at 4 wk post-TPN. A positive correlation was observed between either the signal intensity in certain brain sites or Mn content in blood and the relevant brain sites. Our observations suggest that the Mn concentration in blood and signal intensity in the brain sites on T1-weighted MR images are reliable indices for monitoring Mn contents in brain.  相似文献   

18.
The NMR paramagnetic relaxation enhancement (NMR-PRE) produced in the solvent proton resonance by manganese in the S0 and S2 states of the oxygen evolving center (OEC) has been recorded for three Photosystem II (PS II)-enriched preparations: (1) PS II-enriched thylakoid membrane fragments (TMF-2 particles); (2) salt-washed (2M NaCl) TMF-2 particles; and (3) the octylglucopyranoside (OGP)-solubilized PS II complex. The second and third preparations, but not the first, are depleted of the peripheral 17 and 23 kD polypeptides associated with the OEC. It has been proposed that depletion of these polypeptides increases the exposure of OEC manganese to the aqueous phase. The NMR-PRE response measures the quantity (T1m+m)-1, where T1m is the spin relaxation time and m is the mean residence time with respect to chemical exchange reactions of solvent protons in the manganese coordination sphere, and, thus, the NMR-PRE provides a direct measure of the solvent proton chemical exchange rate constant m -1. This study tested whether the 17 and 23 kD polypeptides shield the OEC from the solvent phase and whether their depletion enhances the S2 and S0 NMR-PRE signals by removing a kinetic barrier to the solvent proton chemical exchange reaction. The amplitude of the S2 NMR-PRE signal, measured in its chemical exchange-limited regime (m>T1m), is slightly decreased, rather than increased, in preparations (2) and (3) relative to (1), indicating that removal of the 17 and 23 kD polypeptides slightly slows, rather than accelerates, the rate-limiting steps of the solvent proton chemical exchange reactions. In addition, the lifetime of the S2 state was shortened several-fold in the solubilized PS II complex and in salt-washed TMF-2 membranes relative to untreated TMF-2 control samples. The S0 NMR-PRE signal, which is present in TMF-2 suspensions, was not detected in suspensions of the solubilized PS II complex, even though these samples contained high concentrations of active manganese centers (approximately double those of the TMF-2 control) and exhibited an S2 NMR-PRE signal of comparable amplitude to that of the TMF-2 preparation. These results suggest that the 17 and 23 kD extrinsic polypeptides do not shield the NMR-visible water binding site in the OEC from the aqueous phase, although their removal substantially alters the proton relaxation efficiency by shortening T1m.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme Y - BBY Photosystem II-enriched membrane fragments prepared by the method of Berthold et al. (1981) - CCCP carbonyl cyanide m-chlorophenyl hydrazone - Chl chlorophyll - DCBQ 2,5-dichlorobenzoquinone - MES morpholinoethanesulfonate - NMR nuclear magnetic resonance - OEC oxygen evolving complex - OGP octylglucopyranoside - PRE paramagnetic relaxation enhancement - PS II Photosystem II - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMF-2 Photosystem II-enriched thylakoid membrane fragments prepared by the method of Radmer et al. (1986) - T1, T2 longitudinal and transverse nuclear spin relaxation times  相似文献   

19.
A set of Mn K-edge XANES spectra due to the redox states S0–S3 of the OEC were determined by constructing a highly-sensitive X-ray detection system for use with physiologically native PS II membranes capable of cycling under a series of saturating laser-flashes. The spectra showed almost parallel upshifts with relatively high K-edge half-height energies given by 6550.9±0.2 eV, 6551.7±0.2 eV, 6552.5±0.2 eV and 6553.6±0.2 eV for the S0, S1, S2 and S3 states, respectively. The successive difference spectra between S0 and S1, S1 and S2, and S2 and S3 states were found to exhibit a similar peak around 6552–6553 eV, indicating that one Mn(III) ion or its direct ligand is univalently oxidized upon each individual S-state transition from S0 to S3. The present data, together with other observations of EPR and pre-edge XANES spectroscopy, suggest that the oxidation state of the Mn cluster undergoes a periodic change; S0: Mn(III,III,III,IV) S1: Mn(III,IV,III,IV) S2: Mn(III,IV,IV,IV) S3: Mn(IV,IV,IV,IV) or Mn(III,IV,IV,IV)·L+ with L being a direct ligand of a Mn(III) ion.Abbreviations Chl chlorophyll - D tyrosine 160 on the D2 protein, an accessory electron donor in PS II - D+ the oxidized form of D - EDTA ethylene-diaminetetraacetic acid - EPR electron paramagnetic resonance - EXAFS extended X-ray absorption fine structure - HL py-2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol - Mes 2-(N-morpholino)ethanesulfonic acid - N4 py-tris(2-pyridylmethyl)amine - OEC oxygen evolving complex - P680 primary electron donor of PS II - PS II Photosystem II - Q400 a high spin Fe3+ of the iron-quinone acceptor complex in PS II - SSD solid state detector - XAFS X-ray absorption fine structure - XANES X-ray absorption near edge structure  相似文献   

20.
A possible relationship between mitochondrial Mg2+ levels, structural configurations, and functional steady states has been studied in rat liver mitochondria. The results show that the concentration of mitochondrial Mg2+ in respiratory state 4 is definitely higher than in respiratory state 3. The metabolic transition from state 3 to state 4 and vice-versa is associated with reversible influx-efflux of about 10 nmol of Mg2+ per mg protein. The net uptake of this aliquot of Mg2+ is a necessary condition in order for the metabolic transition to state 4, both structurally and functionally, to occur. This process requires a threshold concentration of external Mg2+ greater than 5 mM. The phosphorylative mechanism does not appear to depend on the presence or absence of external Mg2+. The role of Mg2+ on the attainment and maintenance of the structural and functional steady state 4 seems to be correlated with its regulatory effect on the concentration of the mitochondrial Pi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号