共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclic nucleotides in procaryotes. 总被引:38,自引:2,他引:38
J L Botsford 《Microbiological reviews》1981,45(4):620-642
3.
4.
The most striking effects of intracellular injections of adenosine 3'5'-cyclic monophosphate (cAMP) into spinal mononeurons in cats are a speeding-up of the action potential, both its rising and falling phase, and a potentiation of the after-hyperpolarization; the latter porbably indicates a marked enhancement of Ca2+ influx. In this respect, cAMP and guanosine 3'5'-cyclic monophosphate (cGMP) have similar actions, though cAMP appears to be more potent. It is suggested that through this mechanism, cyclic nucleotides may play an important role in synaptic facilitation. Changes in resting membrane potential and resistance are less conspicuous or predictable. By contrast, both agents, when injected into unresponsive cells, presumed to be neuroglia, regularly cause a drop in membrane resistance; this is associated with hyperpolarization and therefore likely to reflect an increase in membrane K+ conductance. 相似文献
5.
The natural occurrence of cyclic nucleotides in higher plants, formerly a topic of fierce debate, is now established, as is the presence of nucleotidyl cyclases and cyclic nucleotide phosphodiesterases capable of their synthesis and breakdown. Here we describe the significant properties of cyclic nucleotides, also outlining their second messenger functions and the history of plant cyclic nucleotide research over its first three decades. Findings of the last five years are detailed within the context of the functional role of cyclic nucleotides in higher plants, with particular emphasis upon nucleotidyl cyclases and cyclic nucleotide-responsive protein kinases, -binding proteins and -gated ion channels, with future objectives and strategies discussed. 相似文献
6.
A review of the research on cyclic nucleotides and neuromuscular transmission suggests that cAMP is involved in the release of transmitter from motor nerve endings. Lipid-soluble derivations of cAMP cause depolarization of unstimulated nerve endings and prolong the after potentials of stimulated nerve endings. They also increase the frequency of miniature end plate potentials and increase the quantal content of stimulus evoked end plate potentials. Similar effects are produced by compounds that activate adenylate cyclase or inhibit phosphodiesterase. The responses to the derivatives of cAMP and activators of cyclase are enhanced by inhibitors of phosphodiesterase and prevented by compounds that block the flux of calcium into nerve endings. There is no evidence that suggests that cyclic nucleotides are involved in the postjunctional response to transmitter. Thus, it seems likely that cAMP is involved in the regulation of calcium in motor nerve endings and the exocytosis of transmitter. Additional study should expand our knowledge of neuromuscular transmission and contribute to an understanding of the functions of cyclic nucleotides in other synapses. 相似文献
7.
Cyclic nucleotides in experimental glaucoma 总被引:1,自引:0,他引:1
G N Kryshanowski? L T Kashintseva I N Mikhe?tseva E M Lipovetskaia O P Kopp 《Biulleten' eksperimental'no? biologii i meditsiny》1988,106(10):419-421
cAMP and cGMP contents were studied in various eye tissues of rabbits with experimental glaucoma induced by chronic intravenous adrenaline administration. Cyclic nucleotide level was measured in the retina, choroid, iris and ciliary body. An increase in the tissue cAMP level was found especially in the iris and ciliary body. An increase in tissue cAMP content is explained by an enhanced beta-adrenergic regulation in the eyes of rabbits with experimental glaucoma. No consistent changes were found in cGMP content in eye tissues. 相似文献
8.
9.
10.
The relationship between agonist-sensitive calcium compartments and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in human platelets. In this context, calcium mobilization from intracellular pools and manganese influx was investigated in relation to the effect of altered cyclic-nucleotide levels. For maximal calcium release from intracellular stores, thapsigargin, compared to a receptor agonist like thrombin, requires the platelet's self-amplification mechanism, known to generate thromboxane A2. With this lipid mediator formed, thapsigargin released calcium and stimulated manganese influx in a manner similar to thrombin. Blocking the thromboxane receptor by addition of sulotroban (BM13.177) or, alternatively, increasing platelet cAMP or cGMP using prostacyclin or sodium nitroprusside, dramatically reduced the ability of thapsigargin to release calcium from intracellular compartments. The same experimental conditions significantly reduced the rate of manganese influx initiated by thapsigargin compared to thrombin. The experiments indicate that thapsigargin-sensitive compartments play only a minor role in inducing manganese influx compared to the receptor-sensitive compartment. Cyclic nucleotides accelerate the redistribution of an agonist-elevated platelet calcium into the thapsigargin-sensitive compartment, from which calcium can be released by inhibition of the Ca(2+)-ATPase. In human platelets, thapsigargin-induced calcium increase and influx were responsible for only part the calcium release resulting from inhibition of the corresponding ATPase; another part results from the indirect effect of thapsigargin acting via thromboxane-A2-receptor activation. Cyclic nucleotides are therefore an interesting regulatory device which can modify the thapsigargin response by not allowing the self-amplification mechanism of platelets to operate. 相似文献
11.
12.
W. Seifert 《Journal of cellular biochemistry》1976,4(2):279-287
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle. 相似文献
13.
T P Dousa 《Federation proceedings》1977,36(6):1867-1871
Cyclic 3',5'-nucleotides play an important role in the action of neurohypophyseal hormones on peripheral tissues. All available evidence indicates that cyclic AMP serves as an intracellular mediator in the regulatory action of neurohypophyseal hormones on transport of fluids and solutes across both mammalian and nonmammalian epithelial membranes. There is a close association among binding of neurohypophyseal hormones on membrane, stimulation of cyclic AMP generation, and the functional response. On the other hand, neurohypophyseal hormones have no similar effect on cyclic AMP metabolism in contractile tissues such as smooth muscle. It appears likely that neurohypophyseal hormones stimulate primarily generation of cyclic GMP in contractile tissues, and the increase in cyclic GMP levels may be associated with the contractile response. While the role of cyclic AMP in neurohypophyseal hormone effects in epithelia is firmly established, the possible role of cyclic GMP in contractile responses is largely hypothetical at the present time. 相似文献
14.
Messina E Lupi F Barile L Giacomello A 《Nucleosides, nucleotides & nucleic acids》2004,23(8-9):1551-1554
We have shown that intracellular cGMP levels increase during retinoic acid- and mycophenolic acid-induced neuroblastoma differentiation and that a 6 days treatment with 1 mM dbcGMP lead LAN5 cell to elaborate a network of neuritic processes suggesting an involvement of cGMP in neuroblastoma differentiation. We have also investigated the effects of some specific inhibitors of phosphodiesterases (PDE1, PDE3, PDE4 and PDE5) on human neuroblastoma (LAN5 and SHEP) growth and differentiation. After six days of incubation in the presence of each specific inhibitor at 10 x IC50 levels a cytostatic and differentiating effect was only observed with the PDE5 inhibitors Zaprinast and MY-5445. The cytostatic effect of these compounds increased increasing their concentrations far above their IC50 levels for PDE5, suggesting that these compounds could act by interfering with other molecular events than direct cGMP-PDE inhibition. No appreciable effect was observed using Dipyridamole, another specific PDE5 inhibitor. 相似文献
15.
Adolph I. Cohen 《Neurochemical research》1987,12(6):501-505
16.
A Francavilla R Sabatini E Ierardi A Amoruso C Panella L Polimeno A Restaino L Selvaggi 《Hormones et métabolisme》1985,17(11):617-618
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were assayed in ascitic fluid from 27 patients with ovarian carcinoma and 23 patients with liver cirrhosis. The value of these cyclic nucleotides was correlated with standard methods for the clinical evaluation of tumors. No change in the cGMP levels was found in either of these groups. The cAMP content, however, was increased in 23 of the 27 cases of ovarian carcinoma. The high cAMP level was correlated with the cytological findings in only 13 (48.1%) of these cases. 相似文献
17.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems. 相似文献
18.
19.
G C Palmer 《Life sciences》1985,36(21):1995-2006
Evidence has steadily accumulated to indicate that the rapid fluctuations in cyclic nucleotides during primary and secondary stroke are more than epiphenomena of the disease. During acute phases of ischemia, anoxia or hypoxia cyclic AMP rapidly accumulates in cerebral tissue, cerebrospinal fluid (CSF) and venous plasma, while cyclic GMP either remains unchanged or declines. The massive release of transmitters (catecholamines and adenosine) or ionic fluxes (Na+ and K+) may account for these observations. If reflow is established through a previously occluded vessel cyclic AMP content rises even higher in conjunction with a sharp rise in cyclic GMP. It is during this reflow period subsequent to longer term stroke (30-60 min) that the synaptic membrane enzyme, adenylate cyclase, is especially vulnerable. Presumably the cause of injury to cell membrane systems results from excess lactic acid accumulation and/or Ca++ entry through the damaged blood-brain barrier. The latter initiates breakdown of membrane phospholipids with resultant synthesis of vasoactive prostaglandins and formation of free radicals causing further insult to membrane phospholipids. Thus drugs acting to inhibit formation of prostaglandins, scavenge free radicals, reduce lactate formation, inhibit Ca++ entry or stabilize cell membranes have been shown to possess varying degrees of protective action toward adenylate cyclase. Moreover, cyclic AMP has been found to reverse stroke-induced vasospasm in central vessels. Reduced cyclic AMP content in CSF has been used to monitor the severity of coma, whereas clinical improvement was associated with predictable increases in the cyclic nucleotide. Therefore, cyclic nucleotides and related membrane enzyme systems might be used as target molecules in which to develop future therapeutic strategies for prevention or treatment of stroke. 相似文献
20.
M S Amer 《Life sciences》1975,17(7):1021-1038
The importance of cyclic nucleotide aberrations and the central role of nucleotidyl cyclase hormonal sensitivity in disease are outlined. The hypothesis is presented that sustained increases in sympathetic nerve activity or renin-angiotensin levels early in the development of hypertension may lead to the irreversible loss of vascular adenylyl cyclase hormonal sensitivity coupled with increased phosphodiesterase activity. This leads to increased cyclic GMP: cyclic AMP ratio in the vasculature which translates into elevated vascular smooth muscle tone and sensitivity and mediates the increased vascular smooth muscle proliferation that results in increased wall to lumen ratio. Both these effects underlie the increased peripheral resistance that maintains the hypertensive state. 相似文献