首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exit of cargo molecules from the endoplasmic reticulum (ER) for transport to the Golgi is the initial step in intracellular vesicular trafficking. The coat protein complex II (COPII) machinery is recruited to specialized regions of the ER, called ER exit sites (ERES), where it plays a central role in the early secretory pathway. It has been known for more than two decades that calcium is an essential factor in vesicle trafficking from the ER to Golgi apparatus. However, the role of calcium in the early secretory pathway is complicated and poorly understood. We and others previously identified Sec31A, an outer cage component of COPII, as an interacting protein for the penta-EF-hand calcium-binding protein ALG-2. In this study, we show that another calcium-binding protein, annexin A11 (AnxA11), physically associates with Sec31A by the adaptor function of ALG-2. Depletion of AnxA11 or ALG-2 decreases the population of Sec31A that is stably associated with the ERES and causes scattering of juxtanuclear ERES to the cell periphery. The synchronous ER-to-Golgi transport of transmembrane cargoes is accelerated in AnxA11- or ALG-2-knockdown cells. These findings suggest that AnxA11 maintains architectural and functional features of the ERES by coordinating with ALG-2 to stabilize Sec31A at the ERES.  相似文献   

2.
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson’s disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER–Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER–Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER–Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.  相似文献   

3.
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assembles by the ordered recruitment of cytosolic components on the ER membrane. Here, we have visualized two early components of the COPII machinery, the small GTPase Sar1p and its GTP exchanging factor Sec12p in live tobacco (Nicotiana tabacum) leaf epidermal cells. By in vivo confocal laser scanning microscopy and fluorescence recovery after photobleaching experiments, we show that Sar1p cycles on mobile punctate structures that track with the Golgi bodies in close proximity but contain regions that are physically separated from the Golgi bodies. By contrast, Sec12p is uniformly distributed along the ER network and does not accumulate in these structures, consistent with the fact that Sec12p does not become part of a COPII vesicle. We propose that punctate accumulation of Sar1p represents ER export sites (ERES). The sites may represent a combination of Sar1p-coated ER membranes, nascent COPII membranes, and COPII vectors in transit, which have yet to lose their coats. ERES can be induced by overproducing Golgi membrane proteins but not soluble bulk-flow cargos. Few punctate Sar1p loci were observed that are independent of Golgi bodies, and these may be nascent ERES. The vast majority of ERES form secretory units that move along the surface of the ER together with the Golgi bodies, but movement does not influence the rate of cargo transport between these two organelles. Moreover, we could demonstrate using the drug brefeldin A that formation of ERES is strictly dependent on a functional retrograde transport route from the Golgi apparatus.  相似文献   

4.
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi‐like secretory organelles named encystation‐specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi‐related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII‐associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non‐differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages ofnewly generated ESV. Ectopic expression of non‐functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady‐state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi‐like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi‐less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.  相似文献   

5.
The claim that the 6 kDa viral protein (VP) of Tobacco Etch Virus is a marker for ER exit sites (ERES) has been investigated. When transiently expressed as a CFP tagged fusion construct in tobacco mesophyll protoplasts, this integral membrane protein co-localizes with both the COPII coat protein YFP-SEC24 and the Golgi marker Man1-RFP. However, when over-expressed the VP locates to larger spherical structures which co-localize with neither ER nor Golgi markers. Nevertheless, deletion of the COPII interactive N-terminal D(X)E motif causes it to be broadly distributed throughout the ER, supporting the notion that this protein could be an ERES marker. Curiously, whereas brefeldin A (BFA) caused a typical Golgi-stack response (redistribution into the ER) of the VP in leaf epidermal cells, in protoplasts it resulted in the formation of structures identical to those formed by over-expression. However, anomalous results were obtained with protoplasts: when co-expressed with the non-cycling cis-Golgi marker Man1-RFP, a BFA-induced redistribution of the VP-CFP signal into the ER was observed, but, in the presence of the cycling Golgi marker ERD2-YFP, this did not occur. High resolution images of side-on views of Golgi stacks in epidermal cells showed that the 6 kDa VP-CFP signal overlapped considerably more with YFP-SEC24 than with Man1-RFP, indicating that the VP is proportionately more associated with ERES. However, based on a consideration of the structure of its cytoplasmic tail, the scenario that the VP collects at ERES and is transported to the cis-Golgi before being recycled back to the ER, is supported.  相似文献   

6.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

7.
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER‐to‐Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER‐localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER‐to‐Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.  相似文献   

8.
The Sec16 homologue in Trypanosoma brucei has been identified and characterized. TbSec16 colocalizes with COPII components at the single endoplasmic reticulum exit site (ERES), which is next to the single Golgi stack in the insect (procyclic) form of this organism. Depletion of TbSec16 reduces the size of the ERES and the Golgi, and slows growth and transport of a secretory marker to the cell surface; conversely, overexpression of TbSec16 increases the size of the ERES and Golgi but has no effect on growth or secretion. Together these data suggest that TbSec16 regulates the size of the ERES and Golgi and this size is set for optimal growth of the organism.   相似文献   

9.
The variant surface glycoprotein (VSG) of bloodstream form Trypanosoma brucei (Tb) is a critical virulence factor. The VSG glycosylphosphatidylinositol (GPI)-anchor strongly influences passage through the early secretory pathway. Using a dominant-negative mutation of TbSar1, we show that endoplasmic reticulum (ER) exit of secretory cargo in trypanosomes is dependent on the coat protein complex II (COPII) machinery. Trypanosomes have two orthologues each of the Sec23 and Sec24 COPII subunits, which form specific heterodimeric pairs: TbSec23.1/TbSec24.2 and TbSec23.2/TbSec24.1. RNA interference silencing of each subunit is lethal but has minimal effects on trafficking of soluble and transmembrane proteins. However, silencing of the TbSec23.2/TbSec24.1 pair selectively impairs ER exit of GPI-anchored cargo. All four subunits colocalize to one or two ER exit sites (ERES), in close alignment with the postnuclear flagellar adherence zone (FAZ), and closely juxtaposed to corresponding Golgi clusters. These ERES are nucleated on the FAZ-associated ER. The Golgi matrix protein Tb Golgi reassembly stacking protein defines a region between the ERES and Golgi, suggesting a possible structural role in the ERES:Golgi junction. Our results confirm a selective mechanism for GPI-anchored cargo loading into COPII vesicles and a remarkable degree of streamlining in the early secretory pathway. This unusual architecture probably maximizes efficiency of VSG transport and fidelity in organellar segregation during cytokinesis.  相似文献   

10.
Autophagosomes are double‐membrane vesicles generated during autophagy. Biogenesis of the autophagosome requires membrane acquisition from intracellular compartments, the mechanisms of which are unclear. We previously found that a relocation of COPII machinery to the ER–Golgi intermediate compartment (ERGIC) generates ERGIC‐derived COPII vesicles which serve as a membrane precursor for the lipidation of LC3, a key membrane component of the autophagosome. Here we employed super‐resolution microscopy to show that starvation induces the enlargement of ER‐exit sites (ERES) positive for the COPII activator, SEC12, and the remodeled ERES patches along the ERGIC. A SEC12 binding protein, CTAGE5, is required for the enlargement of ERES, SEC12 relocation to the ERGIC, and modulates autophagosome biogenesis. Moreover, FIP200, a subunit of the ULK protein kinase complex, facilitates the starvation‐induced enlargement of ERES independent of the other subunits of this complex and associates via its C‐terminal domain with SEC12. Our data indicate a pathway wherein FIP200 and CTAGE5 facilitate starvation‐induced remodeling of the ERES, a prerequisite for the production of COPII vesicles budded from the ERGIC that contribute to autophagosome formation.  相似文献   

11.
Runz H  Miura K  Weiss M  Pepperkok R 《The EMBO journal》2006,25(13):2953-2965
Alterations in endoplasmic reticulum (ER) cholesterol are fundamental for a variety of cellular processes such as the regulation of lipid homeostasis or efficient protein degradation. We show that reduced levels of cellular sterols cause a delayed ER-to-Golgi transport of the secretory cargo membrane protein ts-O45-G and a relocation to the ER of an endogenous protein cycling between the ER and the Golgi complex. Transport inhibition is characterized by a delay in the accumulation of ts-O45-G in ER-exit sites (ERES) and correlates with a reduced mobility of ts-O45-G within ER membranes. A simple mathematical model describing the kinetics of ER-exit predicts that reduced cargo loading to ERES and not the reduced mobility of ts-O45-G accounts for the delayed ER-exit and arrival at the Golgi. Consistent with this, membrane turnover of the COPII component Sec23p is delayed in sterol-depleted cells. Altogether, our results demonstrate the importance of sterol levels in COPII mediated ER-export.  相似文献   

12.
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.  相似文献   

13.
Aspergillus nidulans hyphae grow exclusively by apical extension. Golgi equivalents (GEs) labeled with mRFP-tagged PHOSBP domain form a markedly polarized, dynamic network of ring-shaped and fenestrated cisternae that remains intact during “closed” mitosis. mRFP-PHOSBP GEs advance associated with the growing apex where secretion predominates but do not undergo long-distance movement toward the tip that could account for their polarization. mRFP-PHOSBP GEs overlap with the trans-Golgi resident Sec7 but do not colocalize with also polarized accretions of the early Golgi marker GrhAGrh1-GFP, indicating that early and late Golgi membranes segregate spatially. AnSec23-GFP ER exit sites (ERES) are numerous, relatively static foci localizing across the entire cell. However, their density is greatest near the tip, correlating with predominance of early and trans-Golgi elements in this region. Whereas GrhA-GFP structures and ERES reach the apical dome, mRFP-PHOSBP GEs are excluded from this region, which contains the endosome dynein loading zone. After latrunculin-mediated F-actin disruption, mRFP-PHOSBP GEs fragment and, like AnSec23-GFP ERES, depolarize. Brefeldin A transiently collapses late and early GEs into distinct aggregates containing Sec7/mRFP-PHOSBP and GrhA-GFP, respectively, temporarily arresting apical extension. Rapid growth reinitiates after washout, correlating with reacquisition of the normal Golgi organization that, we conclude, is required for apical extension.  相似文献   

14.
In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms.  相似文献   

15.
Transport of proteins and lipids between intracellular compartments is fundamental to the organization and function of eukaryotic cells. The efficiency of this process is greatly enhanced through coupling of membranes to microtubules. This serves two functions, organelle positioning and vesicular transport. In this study, we show that in addition to the well-known role for the minus-end motor dynein in endoplasmic reticulum (ER)-to-Golgi transport, the plus-end-directed motor kinesin-1 is involved in positioning coat protein II-coated ER exit sites (ERES) in cells as well as the formation of transport carriers and their movement to the Golgi. Using two-dimensional Gaussian fitting to determine their location at high spatial resolution, we show that ERES undergo short-range bidirectional movements. Bidirectionality depends on both kinesin-1 and dynein. Suppression of kinesin-1 (KIF5B) also inhibits ER-to-Golgi transport and affects the morphology of ER-to-Golgi transport carriers. Furthermore, we show that suppression of dynein heavy chain expression increases the range of movement of ERES, suggesting that dynein might anchor ERES, or the ER itself, to microtubules. These data implicate kinesin-1 in the spatial organization of the ER/Golgi interface as well as in traffic outside the ER.  相似文献   

16.
Annika Budnik 《FEBS letters》2009,583(23):3796-58
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.  相似文献   

17.
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobel Prize winner George Palade ( Palade 1975). At the center of this transport route, the Golgi stack has a major role in modifying, processing, sorting, and dispatching newly synthesized proteins to their final destinations. More recently, however, it has become clear that an increasing number of transmembrane proteins reach the plasma membrane unconventionally, either by exiting the ER in non-COPII vesicles or by bypassing the Golgi. Here, we discuss the evidence for Golgi bypass and the possible physiological benefits of it. Intriguingly, at least during Drosophila development, Golgi bypass seems to be mediated by a Golgi protein, dGRASP, which is found ectopically localized to the plasma membrane.The secretion of signal peptide-containing and transmembrane proteins through the cellular organelles that form the secretory pathway has been very well characterized over the years (Rothman 1994; Lee et al. 2004). During their translation, signal peptide-containing proteins are specifically recognized in the cytoplasm by the signal recognition particle and localize to the ER by virtue of the SRP binding its receptor (Nagai et al. 2003; Osborne et al. 2005). Other transmembrane proteins are embedded in the ER membrane by a posttranslational mechanism called C-tail anchoring by the GET complex (Schuldiner et al. 2008). Following transfer into or across the ER membrane, nascent proteins undergo folding, oligomerization, and addition of oligosaccharide chains followed by exit via specialized landmarks, known as ER exit sites (ERES) in mammalian cells and transitional ER (tER) sites in yeast and Drosophila. Both sites are characterized by the presence of cargo-containing coat protein complex II (COPII)-coated vesicles (Bonifacino and Glick 2004; Lee et al. 2004). Thereafter, most proteins are transported through the Golgi (in a manner that is still very much debated) before reaching their final destination, such as the plasma membrane for many transmembrane proteins and the extracellular medium for secreted proteins (Mellman and Warren 2000) (Fig. 1, red arrows).Open in a separate windowFigure 1.Classical trafficking, from the ER to the Golgi to the plasma membrane, is represented by the red arrows. A cargo protein can exit from an ERES in close proximity to the cis-Golgi (route 1a) or a peripheral ERES (route 1b), but irrespective of its ER exit, this protein follows a distinct pathway through the Golgi to the plasma membrane. This pathway is dependent on known SNARE proteins, NSF and SNAPs. As proteins pass from the ER and through the Golgi, their ER-derived high mannose oligosaccharides are modified by addition of complex sugars rendering these proteins EndoH-resistant. BFA treatment or loss of function of intra-Golgi SNAREs would lead to the retention of these proteins in the ER or Golgi and their diminished presence at the plasma membrane.Potential routes for Golgi bypass are represented by blue arrows. Like classical cargo proteins, Golgi bypass cargoes may exit from an ERES near the cis-Golgi (routes 2a,c) or a peripheral ERES (route 2b). However, the immediate fate of these proteins deviates from the classical pathway. A protein following route 2a (from an ERES near the cis-Golgi) or 2b (from a peripheral ERES) would traffic on ER-derived transport intermediates directly to the plasma membrane, routes perhaps taken by CD45 or αPS1. This route would require a specific set of SNAREs, yet to be identified. As these proteins do not pass through the Golgi stack, their high mannose N-glycans remain sensitive to EndoH. These pathways are also revealed by blocking passage through the Golgi either by the application of BFA, or by the loss of function of intra-Golgi SNAREs, (e.g., Syntaxin 5), and observing their continued transport to the plasma membrane. Proteins that follow route 2c would bypass the Golgi stack via an endosomal intermediate, which would facilitate their delivery to the plasma membrane via conventional endosomal fusion machinery. In the case of CFTR, its exit from the ER may occur from either ERES location to the TGN or endosomes. If it is directly delivered to endosomes, it is likely recycled back to the TGN in which the observed oligosaccharide modifications take place before reaching the plasma membrane.More recently, however, several examples of protein trafficking that deviate from this dogma have been discovered. First, an increasing number of cytoplasmic proteins (such as IL-1β, FGF2, MIF, and AcbA/Acb1) that do not harbor a signal peptide are found in the extracellular medium, and these display a wide range of critical activities. This “cytoplasmic protein unconventional secretion” has been extensively discussed elsewhere (Nickel and Seedorf 2008; Nickel and Rabouille 2009) and will not be covered in this volume, except for a brief note toward the end. Second, a small subset of proteins does not exit the ER by virtue of classical COPII-coated vesicles. Third, a few transmembrane proteins have been shown to reach the plasma membrane, bypassing the Golgi, which is the focus of this article.Why some proteins follow an unconventional route of secretion is intriguing but on the whole largely unknown. Through evolution, the cell has segregated processes within membrane compartments to maintain and optimize cellular functions. Why would mechanisms evolve to traffic a subset of proteins via unconventional routes? In this article, we discuss examples of Golgi bypass as well as outline why and how some proteins escape the conventional secretory pathway.  相似文献   

18.
Collagens are large secreted trimeric proteins making up most of the animal extracellular matrix. Secretion of collagen has been a focus of interest for cell biologists in recent years because collagen trimers are too large and rigid to fit into the COPII vesicles mediating transport from the endoplasmic reticulum (ER) to the Golgi. Collagen-specific mechanisms to create enlarged ER-to-Golgi transport carriers have been postulated, including cargo loading by conserved ER exit site (ERES) protein Tango1. Here, we report an RNAi screening for genes involved in collagen secretion in Drosophila. In this screening, we examined distribution of GFP-tagged Collagen IV in live animals and found 88 gene hits for which the knockdown produced intracellular accumulation of Collagen IV in the fat body, the main source of matrix proteins in the larva. Among these hits, only two affected collagen secretion specifically: PH4αEFB and Plod, encoding enzymes known to mediate posttranslational modification of collagen in the ER. Every other intracellular accumulation hit affected general secretion, consistent with the notion that secretion of collagen does not use a specific mode of vesicular transport, but the general secretory pathway. Included in our hits are many known players in the eukaryotic secretory machinery, like COPII and COPI components, SNAREs and Rab-GTPase regulators. Our further analysis of the involvement of Rab-GTPases in secretion shows that Rab1, Rab2 and RabX3, are all required at ERES, each of them differentially affecting ERES morphology. Abolishing activity of all three by Rep knockdown, in contrast, led to uncoupling of ERES and Golgi. We additionally present a characterization of a screening hit we named trabuco (tbc), encoding an ERES-localized TBC domain-containing Rab-GAP. Finally, we discuss the success of our screening in identifying secretory pathway genes in comparison to two previous secretion screenings in Drosophila S2 cells.  相似文献   

19.
The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre‐cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post‐mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post‐mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol‐anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans‐face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi.   相似文献   

20.
The plant endoplasmic reticulum (ER) contains functionally distinct subdomains at which cargo molecules are packed into transport carriers. To study these ER export sites (ERES), we used tobacco (Nicotiana tabacum) leaf epidermis as a model system and tested whether increased cargo dosage leads to their de novo formation. We have followed the subcellular distribution of the known ERES marker based on a yellow fluorescent protein (YFP) fusion of the Sec24 COPII coat component (YFP-Sec24), which, differently from the previously described ERES marker, tobacco Sar1-YFP, is visibly recruited at ERES in both the presence and absence of overexpressed membrane cargo. This allowed us to quantify variation in the ERES number and in the recruitment of Sec24 to ERES upon expression of cargo. We show that increased synthesis of membrane cargo leads to an increase in the number of ERES and induces the recruitment of Sec24 to these ER subdomains. Soluble proteins that are passively secreted were found to leave the ER with no apparent up-regulation of either the ERES number or the COPII marker, showing that bulk flow transport has spare capacity in vivo. However, de novo ERES formation, as well as increased recruitment of Sec24 to ERES, was found to be dependent on the presence of the diacidic ER export motif in the cytosolic domain of the membrane cargo. Our data suggest that the plant ER can adapt to a sudden increase in membrane cargo-stimulated secretory activity by signal-mediated recruitment of COPII machinery onto existing ERES, accompanied by de novo generation of new ERES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号