首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

2.
Abstract: The powerful regulatory machinery of protein phosphorylation operates in the extracellular environment of the brain. Enzymatic activity with the catalytic specificity of protein kinase C (PKC) was detected on the surface of brain neurons, where it can serve as a direct target for neurotrophic and neurotoxic substances that control neuronal development and cause neurodegeneration. This activity fulfilled all the criteria required of an ectoprotein kinase (ecto-PK). Detailed analysis of surface protein phosphorylation in cultured brain neurons using specific exogenous substrates (casein, histones, and myelin basic protein), inhibitors (PKC-pseudosubstrate 19–36; K252b) and antibodies (anti-PKC catalytic region M.Ab.1.9, antibodies to the carboxy-terminus of eight PKC isozymes) revealed several types of ecto-PK activity, among them ecto-PKs with catalytic specificity of the PKC isozymes ζ and δ. The activity of the neuronal ecto-PKC is constitutive and not stimulated by phorbol esters. The phosphorylation of a 12K/13K surface protein duplex by ecto-PKC-δ was found to be developmentally regulated, with peak activity occurring during the onset of neuritogenesis. Alzheimer's amyloid peptides β1–40 and β25–35 applied at neurotrophic concentrations stimulated the phosphorylation of endogenous substrates of ecto-PKC activity in brain neurons but inhibited specifically this surface phosphorylation activity with the same dose-response relationships that cause neurodegeneration. As may be expected from a relevant pathophysiological activity, β-amyloid peptide 1–28 did not inhibit this surface phosphorylation. The discovery that ecto-PKC-mediated protein phosphorylation serves as a target for β-amyloid peptides at the very site they operate, i.e., at the neuronal cell surface, opens a new research direction in the investigation of molecular events that play a role in the etiology of developmental disabilities and neurodegenerative disorders.  相似文献   

3.
Staurosporine, which has a structure similar to that of K-252a, a potent protein kinase inhibitor that blocks nerve growth factor (NGF) action in PC12 and PC12h cells, is also known as a potent inhibitor of several protein kinases. This study shows that in PC12h cells staurosporine has a dual action: at lower concentrations than that required by K-252a, it is an inhibitor of NGF induction of neurite formation and of changes in the phosphorylation of specific proteins, whereas at concentrations higher than that required to inhibit NGF-induced neurite outgrowth, it rapidly enhances outgrowth by itself.  相似文献   

4.
Treatment of PC12 cells with nerve growth factor (NGF), epidermal growth factor (EGF), or agents that raise intracellular cyclic AMP (cAMP) levels (e.g., forskolin) reduces the activity of calmodulin-dependent protein kinase III (CaM-PK III) over a period of 8 h. The mechanism of this effect of NGF has now been examined in more detail, making use of a mutant PC12 cell line (A126-1B2) that is deficient in cAMP-dependent protein kinase activity. Control experiments showed that A126-1B2 cells retain other NGF-mediated responses (e.g., the induction of ornithine decarboxylase, a cAMP-independent event) and contain a complement of CaM-PK III and its substrate, elongation factor-2, comparable to that of wild-type cells. The ability of NGF or forskolin, but not of EGF, to down-regulate CaM-PK III was markedly attenuated in A126-1B2 compared to wild-type cells. Treatment of wild-type cells with the cAMP phosphodiesterase inhibitor, isobutylmethylxanthine, enhanced the effects of NGF, but not of EGF. The possibility that NGF led to a stimulation of cAMP-dependent protein kinase activity in wild-type cells was assessed by measurement of the "activation ratio" (-cAMP/+cAMP) of this enzyme before and at various times after NGF addition. A small, but significant, increase in the activation ratio from 0.3 to 0.48 was observed, reaching a peak 5 min after NGF treatment. EGF had no effect on the activation ratio in wild-type cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Treatment of PC12 cells with nerve growth factor (NGF) resulted in the rapid, but transient, activation of a protein kinase which specifically phosphorylated an endogenous 250-kDa cytoskeletal protein (pp250). We report that the microtubule-associated protein, MAP2, is an alternative substrate for the NGF-activated kinase. NGF treatment maximally activated the kinase within 5 min; however, the activity declined with longer exposure to NGF. The enzyme was localized predominantly in microsomal and soluble fractions and phosphorylated MAP2 on serine and threonine residues. The soluble enzyme was fractionated by DEAE chromatography and gel filtration and had an apparent Mr of 45,000. The enzyme was purified to near homogeneity by chromatofocussing and had a pI of 4.9. Kinetic analysis revealed that NGF treatment caused a sevenfold increase in Vmax for MAP2. The Km with respect to the MAP2 substrate was approximately 50 nM and was not altered by NGF treatment. A novel feature of the NGF-stimulated enzyme was its sharp dependence on Mn2+ concentration. The active enzyme is likely to be phosphorylated, because inclusion of phosphatase inhibitors was required for recovery of optimal activity and the activity was lost on treatment of the enzyme with alkaline phosphatase. Histones, tubulin, casein, bovine serum albumin, and the ribosomal subunit protein S-6 were not phosphorylated by this enzyme. The NGF-stimulated kinase was distinct from A kinase, C kinase, or other NGF-stimulated kinases. The rapid and transient activation of the protein kinase upon NGF treatment suggests that the enzyme may play a role in signal transduction in PC12 cells.  相似文献   

6.
Treatment of PC12h cells in tissue culture with nerve growth factor (NGF) led to an increased incorporation of [32P]orthophosphoric acid into specific proteins. The increased phosphorylation of 60,000-dalton and 20,000-dalton proteins in the 0.2% Triton X-100 detergent-soluble fraction, of 35,000-dalton protein in the 0.2% Triton X-100 detergent-insoluble fraction, and of slow migrating protein (SMP) in the nonhistone nuclear fraction was observed upon NGF treatment. On the other hand, wheat germ agglutinin (WGA) treatment of PC12h cells induced a slightly decreased phosphorylation of these NGF-responsive proteins. Incubation of cell-free extracts from PC12h cells with [gamma-32P]ATP led to the phosphorylation of a 100,000-dalton protein. In extracts from cells treated with NGF, the labeling of the 100,000-dalton protein was substantially and selectively reduced. In contrast, treatment of PC12h cells with WGA led to an increased phosphorylation of the 100,000-dalton protein in cell-free extracts. Thus, NGF and WGA showed opposite effects on the phosphorylation of specific proteins in both intact cells and cell-free extracts. In addition, it was also observed in both systems that pre- and posttreatment of PC12h cells with WGA abolished the effects of NGF on the phosphorylation and produced a phosphorylation pattern similar to that from PC12h cells treated only with WGA. In parent PC12 cells, it has been reported that the treatment of cells with WGA inhibits NGF binding to its receptors and converts the rapidly dissociating receptors to slowly dissociating receptors. Thus, WGA in conjunction with NGF, results in the practical disappearance of rapidly dissociating receptors on cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: Nerve growth factor (NGF) increases arachidonic acid (AA) release by PC12 pheochromocytoma cells. To explore the role of protein kinase C (PKC) in this action of NGF, PKC was down-regulated by long-term treatment of the cells with phorbol 12-myristate 13-acetate (PMA). Such prolonged exposure to PMA (1 µ M ) resulted in the inhibition of NGF-induced AA release. Moreover, pretreatment of PC12 cells with the protein kinase inhibitor staurosporine or with calphostin C, a specific inhibitor of PKC, also blocks the increase of AA release induced by NGF. These data, as well as that PMA alone can induce AA release in PC12 cells, suggest that PKC is necessary for NGF-induced AA release. Immunoblot analysis of whole cell lysates by using antibodies against various PKC isoforms revealed that our PC12 cells contained PKCs α, δ, ε, and ζ. PMA down-regulation depleted PKCs α, δ, and ε, and partially depleted ζ. To see which isoform was involved in NGF-induced AA release, an isoform-specific PKC inhibitor was used. GO 6976, a compound that inhibits PKCs α and β specifically, blocked NGF-induced AA release. In addition, thymeleatoxin, a specific activator of PKCs α, β, and γ, induced AA release from PC12 cells in amounts comparable with those seen with NGF. Taken together, these data suggest that PKC α plays a role in NGF-induced AA release.  相似文献   

8.
Abstract: Previous work has shown that nerve growth factor (NGF) stimulates the phosphorylation of the ribosomal protein S6 in PC12 cells. In this study, we show that S6 kinase activity is also present in purified PC12 cell nuclei. This activity was increased by treatment of the cells with NGF and, to a lesser extent, by treatment with epidermal growth factor. The NGF-stimulated activity was obtained from nuclear extracts and some of its characteristics described. The increase in activity was prevented by treatment of the cells with rapamycin or with wortmannin, and the overall activity could be precipitated by antibodies directed against the p85S6K. These data indicate that p85S6K is the NGF-stimulated S6 kinase in PC12 cell nuclei. The presence of S6 protein in the nucleus of PC12 cells has been confirmed and evidence is presented that suggests that it is identical to a protein called SMP reported some years ago.  相似文献   

9.
K-252a, a protein kinase inhibitor isolated from the culture broth of Nocardiopsis sp., inhibits the nerve growth factor (NGF)-stimulated phosphorylation of microtubule-associated protein 2 (MAP2) and Kemptide (synthetic Leu-Arg-Arg-Ala-Ser-Leu-Gly) by blocking the activation of two independent kinases in PC12 cells: MAP2/pp250 kinase and Kemptide kinase. The NGF-stimulated activation of these kinases is inhibited in a dose-dependent manner following treatment of the cells with K-252a. Although these kinases also are activated by epidermal growth factor (EGF) and 12-O-tetradecanoyl-phorbol 13-acetate, K-252a has no inhibitory effect when these agents are used. Half-maximal inhibition of the activation of both kinases was observed at 10-30 nM K-252a. K-252a was shown to directly inhibit the activity of MAP2/pp250 kinase and Kemptide kinase when added to the phosphorylation reaction mixture in vitro; however, half-maximal inhibition under these conditions was observed at greater than or equal to 50 nM K-252a. These data suggest that K-252a exerts its effects at a step early in the cascade of events following NGF binding. The effects of K-252a are similar to those reported for 5'-S-methyladenosine (MTA) and other methyltransferase inhibitors. Treatment of PC12 cells with MTA inhibited NGF-, but not EGF-mediated activation of MAP2/pp250-kinase (Ki greater than 500 microM). MTA, when added to the phosphorylation reaction mixture in vitro, directly inhibited kinase activity (Ki = 50 microM), suggesting that the effects of MTA may be the result of its action on protein kinases rather than methyltransferases.  相似文献   

10.
Abstract: Suramin is a polysulfonated naphthylurea with demonstrated antineoplastic activity. Toxicity includes adrenal insufficiency and peripheral neuropathy. Although the mechanism of antitumor activity is unknown, inhibition of binding of growth factors to their receptors has been suggested. Growth factors inhibited by suramin include platelet-derived growth factor, fibroblast growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, and nerve growth factor (NGF). In these studies, suramin was shown to be cytotoxic to PC12 cells in a dose-dependent manner. At lower doses and in surviving cells, we observed the induction of neurite outgrowth. To determine the mechanism of suramin-induced neurite outgrowth, PC12 cells were exposed to suramin and/or NGF for various time periods and treated cells were analyzed, by western blot analysis, for expression of tyrosine phosphoproteins. There was a similarity in the pattern of tyrosine-phosphorylated proteins in PC12 cells stimulated with suramin or NGF. Of particular interest was the rapid phosphorylation (by 1 min) of the high-affinity NGF (TrkA) receptor. Activation of other members of the signal-transduction cascade (Shc, p21 ras , Raf-1, ERK-1) revealed similar phosphorylation levels induced by suramin and NGF. Parallel studies were performed in rat dorsal root ganglion cultures; suramin potentiated neurite outgrowth and activated the NGF receptor on these cells. This finding of specific patterns of tyrosine phosphorylation of cellular proteins in response to suramin treatment demonstrated that suramin is a partial agonist for the NGF receptor in both PC12 cells and dorsal root ganglion neurons.  相似文献   

11.
Previous studies from this laboratory have shown that the phosphorylation of the S6 protein of the ribosomes is catalyzed by at least two different and separable kinase activities in PC12 cells. One of these activities is increased by treatment of the cells with nerve growth factor, the other by treatment of the cells with epidermal growth factor. The present work shows that these two factors stimulate the phosphorylation of S6 with quite different kinetics, and that both the number of phosphates incorporated into S6 and the phosphopeptide pattern of S6 are different in cells treated with nerve growth factor than in cells treated with epidermal growth factor. The characteristics of the nerve growth factor-sensitive S6 kinase and of the epidermal growth factor-sensitive kinase were also clearly different. Substrate specificity and inhibitor studies indicated that neither was identical to cyclic AMP-dependent kinase, kinase C, or the calcium/calmodulin-dependent kinases. However, two major phosphopeptides produced by S6 phosphorylation in nerve growth factor-treated cells were also seen on phosphorylation of S6 by cyclic AMP-dependent kinase in vitro. In addition, when rat liver 40S ribosomal subunits were pretreated with cyclic AMP-dependent kinase in vitro, the action of the nerve growth factor-sensitive S6 kinase was increased about twofold.  相似文献   

12.
Abstract: The effects of the protein kinase inhibitor H-7 on early and delayed responses to nerve growth factor (NGF) were investigated in PC12 cells. H-7 reduced the NGF-induced expression of c-Fos in a dose-dependent manner without affecting the time course of c-Fos appearance. Conversely, H-7 potentiated delayed NGF effects, i.e., neurite outgrowth and Ca2+/phospholipid-dependent protein kinase (PKC) induction, but not choline acetyltransferase induction. Long-term treatment with NGF resulted in an increase of at least four tyrosine-phosphorylated protein bands with molecular masses between 39 and 48 kDa, which was also potentiated by H-7. In the absence of NGF, H-7 had no significant effect on c-Fos expression, tyrosine phosphorylation of the 45 kDa protein, or choline acetyltransferase activity. However, 4 days of exposure to H-7 alone induced PKC activity and tyrosine phosphorylation of the 39-kDa protein. The action of H-7 derivatives on neurite outgrowth did not correlate with their inhibition profile of cyclic nucleotide-dependent protein kinases. Down-regulation of PKC activity by prolonged exposure to phorbol ester did not completely abolish the effects of NGF and H-7 on induction of c-Fos, choline acetyltransferase activity, and neurite outgrowth, indicating that PKC-independent pathways contribute to these actions. These results suggest that additional pathway(s) sensitive to H-7 may exist, which induce immediate early gene expression and suppress neuronal differentiation of PC12 cells.  相似文献   

13.
Soluble extracts from nerve growth factor (NGF)-stimulated PC12 cells prepared by alkaline lysis show a two- to 10-fold greater ability to phosphorylate the 40S ribosomal protein S6 than do extracts from control cells. The alkaline lysis method yields a preparation of much higher specific activity than does sonication. Half-maximal incorporation of 32P from [32P]ATP into S6 occurred after 4-7 min of NGF treatment. The partially purified NGF-sensitive S6 kinase has a molecular weight of 45,000. It is not inhibited by NaCl, chlorpromazine, or the specific inhibitor of cyclic AMP (cAMP)-dependent protein kinase, nor is it activated by addition of diolein plus phosphatidylserine. Trypsin treatment of either crude extracts or partially purified S6 kinase from control or NGF-treated cells was without effect. These data suggest that the S6 kinase stimulated by NGF is neither cAMP-dependent protein kinase or protein kinase C nor the result of tryptic activation of an inactive proenzyme. Treatment of intact cells with dibutyryl cAMP or 5'-N-ethylcarboxamideadenosine also increases the subsequent cell-free phosphorylation of S6. This observation suggests that cAMP-dependent protein kinase may be involved in the phosphorylation of S6 kinase.  相似文献   

14.
Abstract: Receptors for insulin-like growth factor I (IGF-I) were studied on PC12EY cells, a subclone of PC12. Differentiation of PC12EY cells with nerve growth factor (NGF) did not alter either the number of IGF-I receptors nor their affinity for IGF-I. IGF-I receptors remained fully functional during differentiation, promoting increases in thymidine incorporation, glucose uptake, amino acid uptake, and the phosphorylation of the S6 protein of the ribosomes. IGF-I also increased the proportion of differentiated cells found in S-phase. But although the addition of IGF-I to naive cells caused an increase in cell number, there was no comparable increase when IGF-I was added to differentiated cells. Thus, although the receptor for IGF-I continues to be present and functional, IGF-I fails to induce cell proliferation in differentiated PC12 cells.  相似文献   

15.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

16.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system.  相似文献   

17.
Abstract: Previous studies showed that purine analogs block with varying efficiency and specificity certain effects of nerve growth factor (NGF) on PC12 cells. These compounds also inhibit protein kinase activities. The analog 6-thioguanine has thus far been shown to inhibit only protein kinase N, an NGF-activated protein kinase, whereas 2-aminopurine also blocks other kinases. In the present study, immunoprecipitates of Trk NGF receptors from PC12 cells (NGF treatment) were assayed for protein kinase activity by using the substrates myelin basic protein and histone HF1 under phosphorylating conditions optimal for protein kinase N and in the presence or absence of purine analogs. Activity was detected and ∼50–80% was inhibited by these compounds. The purine analog-sensitive activity was maximally stimulated by NGF within 5 min, was partially decreased by 10 min, and still remained over basal levels after 15 h of NGF treatment. Analysis of myelin basic protein phosphorylated by anti-Trk immunoprecipitates revealed an NGF-stimulated increase in phosphothreonine and phosphotyrosine. Phosphorylation of threonine, but not of tyrosine residues, was inhibited by 6-thioguanine, which therefore inhibits a serine/threonine kinase associated with NGF receptor rather than the receptor kinase itself. Neither 2-aminopurine nor 6-thioguanine inhibited the NGF-dependent induction of Trk-associated kinase activity. Our findings thus indicate association of a purine analog-sensitive serine/threonine protein kinase activity with Trk NGF receptors.  相似文献   

18.
Previous work from these laboratories has shown that in PC12 cells the phosphorylation of a specific soluble protein is decreased by treatment with nerve growth factor. This protein, designated Nsp100, and its kinase have been separated and partially purified from PC12 cells. The present studies have been designed to investigate the role of calcium in this action of nerve growth factor. It is shown here, using PC12h cells, that A23187, a calcium ionophore, and high levels of K+, a depolarizing stimulus, also decrease phosphorylation of Nsp100. Furthermore, the actions of nerve growth factor as well as those of A23187 and high levels of K+ are prevented by treatment of the cells with the calcium chelator EGTA. It is also shown that agents that raise levels of cyclic AMP in the cells, specifically dibutyryl cyclic AMP and cholera toxin, also decrease phosphorylation of Nsp100 but, in addition, increase phosphorylation of tyrosine hydroxylase. The action of these latter agents on Nsp100 is blocked by EGTA, but their action on tyrosine hydroxylase is not, indicating that even agents such as cholera toxin act on Nsp100 through a Ca2+-dependent mechanism.  相似文献   

19.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

20.
Abstract: A small number of p185c- neu receptors have been found on PC12 cells. These receptors show some basal phosphorylation in quiescent cells. When the cells are treated with nerve growth factor (NGF) for a short time, some increase in phosphorylation is seen, mainly on serine and threonine residues, and this is accompanied by a slight shift in the apparent molecular weight. Epidermal growth factor (EGF) also increases the phosphorylation of p185c- neu , in this case on tyrosine residues. Neither heregulin-β1 nor gp30 stimulates the tyrosine phosphorylation of p185c- neu , and neither has a proliferative effect on the cells. Treatment of the cells with NGF for 5 days produces a 70–80% reduction in the number of p185c- neu receptors. This down-regulation does not occur when PC12nnr5 cells, which lack the high-affinity NGF receptor, p140 trk , are treated with NGF.The level of p185c- neu mRNA is not altered by NGF treatment, suggesting that the down-regulation is due to either a translational or a posttranslational alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号