首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Saccharomyces cerevisiae can form petite mutants with deletions in mitochondrial DNA (mtDNA) (ρ?) and can survive complete loss of the organellar genome (ρo), the genetic factor(s) that permit(s) survival of ρ? and ρo mutants remain(s) unknown. In this report we show that a function associated with the F1-ATPase, which is distinct from its role in energy transduction, is required for the petite-positive phenotype of S. cerevisiae. Inactivation of either the α or β subunit, but not the γ, δ, or ? subunit of F1, renders cells petite-negative. The F1 complex, or a subcomplex composed of the α and β subunits only, is essential for survival of ρo cells and those impaired in electron transport. The activity of F1 that suppresses ρo lethality is independent of the membrane Fo complex, but is associated with an intrinsic ATPase activity. A further demonstration of the ability of F1 subunits to suppress ρo lethality has been achieved by simultaneous expression of S. cerevisiae F1α and γ subunit genes in Kluyveromyces lactis– which allows this petite-negative yeast to survive the loss of its mtDNA. Consequently, ATP1 and ATP2, in addition to the previously identified AAC2, YME1 and PEL1/PGS1 genes, are required for establishment of ρ? or ρo mutations in S. cerevisiae.  相似文献   

2.
Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle. Received: 7 April 1998 / Accepted: 10 June 1998  相似文献   

3.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding the- and-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0.  相似文献   

4.
To study interaction of specific antibodies with the GABA receptor/channel, antisera were raised against the extracellular domains of the GABAA receptor/channel β2 subunit, γ2 subunit and the GABAC receptor/channel ρ1 subunit. The specificity of the antibodies was characterized by immunocytochemistry and by Western blotting of transfected FDC-P1 cells expressing recombinant GABA receptor/channel subunits. The effects of the antibodies on whole-cell currents in Xenopus laevis oocytes expressing homomeric recombinant GABA receptor/channel β2, γ2, and ρ1 were studied using two-microelectrode voltage clamp. In the absence of GABA, anti-α2, anti-γ2, and anti-ρ1 antisera elicited whole-cell currents in oocytes expressing β2, γ2, and ρ1 subunits, respectively. The effect of antibody on channel activation was concentration-dependent. The whole-cell currents induced by anti-β2 and anti-γ2 were several-fold greater than those induced by application of 100 μm GABA. In Xenopus oocytes expressing recombinant ρ1 subunits, GABA-induced whole-cell currents were inhibited by the anti-ρ1 antibody. In contrast, the GABA-induced whole-cell currents were potentiated several-fold by anti-β2 and anti-γ2 antibodies in Xenopus oocytes expressing homomeric β2 and γ2 subunits. Our studies indicate that antibodies specific to the N-terminal domain of GABA receptor/channel subunits can modulate the neurotransmitter receptor function. Received: 2 February 2001/Revised: 11 April 2001  相似文献   

5.
F1-ATPase is a molecular motor in which the γ subunit rotates inside the α3β3 ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F1-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the γ subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F1 and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the γ subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F1 from thermophilic Bacillus PS3: the internal part of the γ subunit embedded in the α3β3 ring, and the complex of the external part of the γ subunit and the α3β3 ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the γ subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between Fo and F1-ATPase.  相似文献   

6.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding theα- andγ-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0.  相似文献   

7.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goα was highly purified from Escherichia coli cotransformed with pQE60 Goα and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goα and the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goα GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goα GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1 ±0.22) ×105 to (4.1±0.43) × 105 (M−1). However, no obvious changes of fluorescence spectra of Goα GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

8.
The F1-ATP synthase complex constitutes the catalytic component of F1F0-ATP synthase, the primary ATP synthetic enzyme in the cell. Previous studies indicate that the glacier ice worm, Mesenchytraeus solifugus, maintains unusually high ATP levels that continue to rise as temperatures decline, suggesting that molecular changes within ice worm F1-ATP synthase subunits may contribute to this energetic anomaly. In this report, we compared ice worm F1-ATP synthase subunits (α, β, γ) with homologues across metazoan phyla (arthropod, chordate, nematode) and among a group of clitellate annelids (Enchytraeus albidus, Enchytraeus buchholzi, Lumbriculus variegatus, Theromyzon tessulatum). Amino acid alignments indicated that ice worm F1-ATP α and F1-ATP β subunits share strong sequence homology with their mesophilic counterparts, respectively, but that ATP γ has diverged more rapidly. Moreover, F1-ATP α and F1-ATP β displayed amino acid compositional changes consistent with trends observed in other cold adapted proteins, while F1-ATP γ diverged in unexpected directions (e.g., gains in size, charged residues). Several ice worm-specific amino acid substitutions map to positions near the F1-ATP β catalytic site while others occur near subunit contact sites.  相似文献   

9.
(1) Voltage-gated Ca2+ (CaV) channels are multi-subunit membrane complexes that allow depolarization-induced Ca2+ influx into cells. The skeletal muscle L-type CaV channels consist of an ion-conducting CaV1.1 subunit and auxiliary α2δ−1, β1 and γ1 subunits. This complex serves both as a CaV channel and as a voltage sensor for excitation–contraction coupling. (2) Though much is known about the mechanisms by which the α2δ−1 and β1 subunits regulate CaV channel function, there is far less information on the γ1 subunit. Previously, we characterized the interaction of γ1 with the other components of the skeletal CaV channel complex, and showed that heterologous expression of this auxiliary subunit decreases Ca2+ current density in myotubes from γ1 null mice. (3) In the current report, using Western blotting we show that the expression of the CaV1.1 protein is significantly lower when it is heterologously co-expressed with γ1. Consistent with this, patch-clamp recordings showed that transient transfection of γ1 drastically inhibited macroscopic currents through recombinant N-type (CaV2.2/α2δ−1/β3) channels expressed in HEK-293 cells. (4) These findings provide evidence that co-expression of the auxiliary γ1 subunit results in a decreased expression of the ion-conducting subunit, which may help to explain the reduction in Ca2+ current density following γ1 transfection.  相似文献   

10.
Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (F v/F m), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (α), and the photoadaptive index (E k). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0–5 cm from ice–water interface) expressed low F v/F m (0.331–0.426) and low α (0.098–0.130 (μmol photons m−2s−1)−1) in December. F v/F m and α increased in March and May (0.468–0.588 and 0.141–0.438 (μmol photons m−2s−1)−1, respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3–16.4 a.u.) and E k (20–88 μmol photons m−2 s−1) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).  相似文献   

11.
The gene mel1, encoding α-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and α-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanolproducing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular α-galactosidase and β-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC1 co-expressing 2 genes could achieve 0.29 OD600 h−1 and a biomass yield up to 7.8 g l−1 dry cell weight on medium containing 10.0 g l−1 cellobiose and 10.0 g l−1 melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l−1 ethanol was produced from 100 g of cellulose supplied with 5 g l−1 melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

12.
GABA-activated Cl current was expressed in Xenopus oocytes after injecting cRNA that had been transcribed in vitro from complementary DNA (cDNA) coding for a single GABA ρi-subunit cloned from human retina. The expressed current was insensitive to 100 μm bicuculline, but was activated by the GABA analogue trans-4-aminocrontonic acid (TACA). Anion-selective permeability of the expressed ρ1-subunit was determined by isotonically replacing the extracellular Cl with different anions. The anion permeability was very similar to the native GABAA receptor/channel following a sequence of SCN > I > NO3 > Br≥ Cl. Halogenated fatty acids, such as chlorotrifluoroethylene (CTFE) and perfluorinated oligomer acids inhibited the GABA-induced current in oocytes expressing the human retinal GABA ρ1-subunit or rat brain GABAA receptor α122 subunits. The inhibitory effect of halogenated fatty acids demonstrated a carbon chain length-dependent manner of: C10 > C8 > C6 > C4. Perfluorinated C8-oligomer acid (PFOA) was less effective at blocking this channel than the C8-CTFE oligomer acid. Radiolabeled GABA binding assay indicated that CTFE oligomer acids do not interfere at the GABA binding site of the receptor. Furthermore, the C8-CTFE oligomer fatty acid did not compete with picrotoxin for binding sites within the pore of the channel. These studies demonstrated that the heterologous expression system is useful for studying the molecular interaction between potential neurotoxic agents and neuroreceptors. Our results provide detailed information that should contribute to our understanding of the structure and function of retinal GABA receptors. Received: 12 June 1995/Revised: 21 September 1995  相似文献   

13.
The changes in photosynthetic efficiency and photosynthetic pigments during dehydration of the resurrection plantSelaginella lepidophylla (from the Chiuhahuan desert, S.W. Texas, USA) were examined under different light conditions. Changes in the photosynthetic efficiency were deduced from chlorophyll a fluorescence measurements (Fo, Fm, and Fv) and pigment changes were measured by HPLC analysis. A small decrease in Fv/Fm was seen in hydrated stems in high light (650 μmol photons·m−2·s−1) but not in low light (50 μmol photons·m−2·s−1). However, a pronounced decline in Fv/Fm was observed during dehydration in both light treatments, after one to two hours of dehydration. A rise in Fo was observed only after six to ten hours of dehydration. Concomitant with the decrease in photosynthetic efficiency during dehydration a rise in the xanthophyll zeaxanthin was observed, even in low-light treatments. The increase in zeaxanthin can be related to previously observed photoprotective non-photochemical quenching of fluorescence in dehydrating stems ofS. lepidophylla. We hypothesize that under dehydrating conditions even low light levels become excessive and zeaxanthin-related photoprotection is engaged. We speculate that these processes, as well as stem curling and self shading (Eickmeier et al. 1992), serve to minimize photoinhibitory damage toS. lepidophylla during the process of dehydration.  相似文献   

14.
We investigated the voltage dependence of nifedipine sensitivity of the ion channels formed by α1 subunits of the cardiac and smooth muscles (CM and SM, respectively) L-type Ca2+ channels stably expressed in Chinese hamster ovary (CHO) cells. Equilibrium inhibition of the α1 subunits, directing Ba2+ current (I α1), by different concentrations of nifedipine was measured at the holding potentials (V h ) of −100 mV and −50 mV. AtV h =−100 mV, the SM α1 subunit was found to be 6-fold more sensitive for nifedipine than the subunit (K −100=8.3 and 50.4 nM, respectively). Depolarization to −50 mV resulted in about sevenfold increase in the nifedipine potency for both subunits (K −50=1.25 and 6.95 nM, respectively). The voltage dependence of steady-state inactivation could be fitted by a sum of two Boltzmann’s equations with slope factors of about 12 and 5 mV. The midpoints of both components in the CM α1 subunit (−75.6 and −42.8 mV) were more negative than those in the SM subunit (−63.7 and −37.7 mV). The relative contribution of the less sloped component in the control was rather low, being less pronounced in the CM (0.15) than in the SM (0.34) subunits. Nifedipine shifted the midpoints of inactivation curves to more negative potentials. The shift was more pronounced for the SM α1 subunit (−24.8 mV compared with −11.8 mV for the CM subunit in the presence of 10 nM nifedipine). Nifedipine differentially affected the two Boltzmann components of inactivation curves, more effectively inhibiting the steeper component. In the presence of 10 nM nifedipine, this component completely disappeared in the SM subunit, while its relative contribution in the CM subunit decreased from 0.85 to 0. 57, resulting in an apparent decrease in the steepness. These results are inconsistent with the receptor modulated hypothesis and suggest the existence of two mechanisms of inactivation characterized by different voltage dependence.  相似文献   

15.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

16.
Osmotically driven water flow, u (cm/s), between two solutions of identical osmolarity, co (300 mM in mammals), has a theoretical isotonic maximum given by u = j/co, where j (moles/cm2/s) is the rate of salt transport. In many experimental studies, transport was found to be indistinguishable from isotonic. The purpose of this work is to investigate the conditions for u to approach isotonic. A necessary condition is that the membrane salt/water permeability ratio, ε, must be small: typical physiological values are ε = 10−3 to 10−5, so ε is generally small but this is not sufficient to guarantee near-isotonic transport. If we consider the simplest model of two series membranes, which secrete a tear or drop of sweat (i.e., there are no externally-imposed boundary conditions on the secretion), diffusion is negligible and the predicted osmolarities are: basal = co, intracellular ≈ (1 + ε)co, secretion ≈ (1 + 2ε)co, and u ≈ (1 − 2ε)j/co. Note that this model is also appropriate when the transported solution is experimentally collected. Thus, in the absence of external boundary conditions, transport is experimentally indistinguishable from isotonic. However, if external boundary conditions set salt concentrations to co on both sides of the epithelium, then fluid transport depends on distributed osmotic gradients in lateral spaces. If lateral spaces are too short and wide, diffusion dominates convection, reduces osmotic gradients and fluid flow is significantly less than isotonic. Moreover, because apical and basolateral membrane water fluxes are linked by the intracellular osmolarity, water flow is maximum when the total water permeability of basolateral membranes equals that of apical membranes. In the context of the renal proximal tubule, data suggest it is transporting at near optimal conditions. Nevertheless, typical physiological values suggest the newly filtered fluid is reabsorbed at a rate u ≈ 0.86 j/co, so a hypertonic solution is being reabsorbed. The osmolarity of the filtrate cF (M) will therefore diminish with distance from the site of filtration (the glomerulus) until the solution being transported is isotonic with the filtrate, u = j/cF.With this steady-state condition, the distributed model becomes approximately equivalent to two membranes in series. The osmolarities are now: cF ≈ (1 − 2ε)j/co, intracellular ≈ (1 − ε)co, lateral spaces ≈ co, and u ≈(1 + 2ε)j/co. The change in cF is predicted to occur with a length constant of about 0.3 cm. Thus, membrane transport tends to adjust transmembrane osmotic gradients toward εco, which induces water flow that is isotonic to within order ε. These findings provide a plausible hypothesis on how the proximal tubule or other epithelia appear to transport an isotonic solution.  相似文献   

17.
Songbirds are widely studied to investigate the hormonal control of behavior. However, little is known about the effects of steroids on neurotransmission in these birds. We used electrophysiological and pharmacological techniques to characterize γ-aminobutyric acid (GABA) type A receptors (GABAA) of primary cultured telencephalic and hippocampal neurons from developing zebra finches. Additionally, their modulation by 17β-estradiol(E2), 5α- and 5β-dihydrotestosterone (DHT), 5α- and 5β-pregnan-3α-ol-20-one, and corticosterone was examined. Whole-cell GABA-evoked currents were inhibited by picrotoxin (10 μmol l−1) and bicuculline methiodide (10 μmol l−1) and potentiated by pentobarbital (100 μmol l−1) and propofol (3 μmol l−1). Loreclezole (10 μmol l−1) potentiated GABA-evoked currents, suggesting the presence of β2, β3 and/or β4 subunits. Diazepam (1 μmol l−1) potentiated currents, while Zn2+ (1 μmol l−1) caused no inhibition, indicating the presence of γ subunits. 5α- and 5β-Pregnan-3α-ol-20-one (100 nmol l−1) potentiated currents, whereas E2 (1 μmol l−1), 5α- and 5β-DHT (1 μmol l−1), and corticosterone (10 μmol l−1) had no detectable effect. We conclude that zebra finch telencephalic and hippocampal GABAA receptors include α, β, and γ subunits and are similar to their mammalian counterparts in both their biophysical and pharmacological properties. Additionally, GABA-evoked currents are greatly potentiated by 5α- and 5β-pregnan-3α-ol-20-one but show little or no acute modulation by sex steroids or corticosterone. Accepted: 12 November 1997  相似文献   

18.
Two respiratory-deficient nuclear petites, FY23Δpet191 and FY23Δcox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23ρ0. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K i, of 2.3% (w/v) and a specific rate of ethanol production, q p, of 0.90 g ethanol g dry cells−1 h−1. FY23ρ0 was the most sensitive to ethanol, exhibiting a K i of 1.71% (w/v) and q p of 0.87 g ethanol g dry cells−1 h−1. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23Δpet191, having a K i of 2.14% (w/v) and the 85% respiratory-deficient FY23Δcox5a, having a K i of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23ρ0 is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject to the Pasteur effect and so exhibit higher rates of fermentation. Received: 22 September 1997 / Accepted: 7 December 1997  相似文献   

19.
The effect of curcumin on lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute shock model of liver injury was examined in mice. The simultaneous administration of LPS (5–20 μg kg−1, i.p.) and GalN (700 mg kg−1, i.p.) markedly increased the serum tumor necrosis factor-α (TNF-α), glutamic oxaloacetic transaminase/glutamic pyruvic transaminase (GOT/GPT), and massive hepatic necrosis and inflammation, leading to 100% lethality. Pre-administration of curcumin (100 mg kg−1, i.p.) 3 h before induction with LPS/GalN imparted a large extent of protection against acute elevation in serum TNF-α and serum GOT/GPT. Hepatic necrosis and lethality caused by LPS/GalN was also greatly reduced by curcumin treatment. The results demonstrated that curcumin could protect mice from LPS/GalN-induced hepatic injury and inflammation through blockading TNF-α production, eventually raising the survival rate of septic-shock-induced mice.  相似文献   

20.
Leaves ofNerium oleander L. plants, which had been previously kept in a shaded glasshouse for at least two months, were fed 1 mM dithiothreitol (DTT) through their petioles, either for 12h in darkness (overnight) or for 2h in low light (28 μmol photons·m−2·s−1), in each case followed by a 3-h exposure to high light (1260 μmol photons·m−2·s−1). During exposure to high light, violaxanthin became converted to zeaxanthin in control leaves, to which water had been fed, whereas zeaxanthin did not accumulate in leaves treated with DTT. Total carbon gain was not reduced by DTT during the photoinhibitory treatment. Exposure to high light led to a decrease in the photochemical efficiency of photosystem II, measured as the ratio of variable over maximum fluorescence emission,F v/F M, at both 298 K and 77K. The decrease was much more pronounced in the presence of DTT, mainly owing to a sustained increase in the instantaneous fluorescence,F o. By contrast, in the control leaves,F o determined immediately after the high-light treatment showed a transient decrease below theF o value obtained before the onset of the photoinhibitory treatment (i.e. after 12 h dark adaptation), followed by a rapid return (within seconds) to this original level ofF o during the following recovery period in darkness. Incubation of leaves with DTT led to large, sustained decreases in the photon-use efficiency of photosynthetic O2 evolution by bright light, whilst the capacity of photosynthetic O2 evolution at light and CO2 saturation was less affected. In the control leaves, only small reductions in the photon yield and in the photosynthetic capacity were observed. These findings are consistent with previous suggestions that zeaxanthin, formed in the xanthophyll cycle by de-epoxidation of violaxanthin, is involved in protecting the photosynthetic apparatus against the adverse effects of excessive light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号