首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer's disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with AD.  相似文献   

2.
A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions bothin vitro andin vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone.In conclusion: in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.  相似文献   

3.
Impulsivity, or a tendency to act without anticipation of future consequences, is associated with drug abuse. Impulsivity is typically separated into two main measures, impulsive action and impulsive choice. Given the association of impulsivity and drug abuse, treatments that reduce impulsivity have been proposed as an effective method for countering drug addiction. Progesterone has emerged as a promising treatment, as it is associated with decreased addiction-related behaviors and impulsive action. The goal of the present study was to determine the effects of progesterone (PRO) on impulsive action for food: a Go/No-Go task. Female and male rats responded for sucrose pellets during a Go component when lever pressing was reinforced on a variable-interval 30-s schedule. During the alternate No-Go component, withholding a lever press was reinforced on a differential reinforcement of other (DRO) behavior 30-s schedule, where a lever press reset the DRO timer. Impulsive action was operationally defined as the inability to withhold a response during the No-Go component (i.e. the number of DRO resets). Once Go/No-Go behavior was stable, responding between rats treated with PRO (0.5 mg/kg) or vehicle was examined. Progesterone significantly decreased the total number of DRO resets in both males and females, but it did not affect VI responding for sucrose pellets. This suggests that PRO decreases motor impulsivity for sucrose pellets without affecting motivation for food. Thus, PRO may reduce motor impulsivity, a behavior underlying drug addiction.  相似文献   

4.
We have previously described a class of virus inhibitors which are produced spontaneously by many types of cells in culture and present in a number of physiological fluids. These inhibitors are differentiated from all other known naturally occurring antiviral substances in regard to their (i) lack of species specificity, (ii) broad antiviral activity (iii) absence of high affinity binding by the inhibitor to the virus, (iv) mechanism of the action of the inhibitor is through inhibition of viral attachment, and (v) extreme thermal stability. In this report, we show that this class of inhibitors can be divided into two distinct subclasses. The first category includes the inhibitor spontaneously produced by cells in culture, originally described as contact-blocking viral inhibitor (CVI), and has a polypeptide component associated with its antiviral activity. The second category includes the inhibitors detected in body fluids and tissue extracts and has no essential peptide structure. Further characterization of CVI with respect to molecular size and stability to heat and a number of chemical reagents and enzymes indicate that the antiviral activity of CVI is associated with a large molecule (90s or approximately 4 million daltons), is stable at 100(8)C, and is resistant to the action of RNase, DNase, sulfhydral reagents, protein denaturants, and extraction by organic solvents.  相似文献   

5.
Immunohistochemistry was used to study the changes in the number of G cells in the antral part of the stomach of rats (40 animals) with cystamine-induced duodenal ulcer treated with beta-endorphine. In the stomach of rats with cystamine-induced ulcer the number of G cells was discovered to be significantly increased, which was removed by an opioid peptide. Naloxone did not block the action of beta-endorphine. Thus, beta-endorphine changes the number of G cells, the drug action being not associated with opiate receptors.  相似文献   

6.
Zalla T  Daprati E  Sav AM  Chaste P  Nico D  Leboyer M 《PloS one》2010,5(10):e13370
Memory for action is enhanced if individuals are allowed to perform the corresponding movements, compared to when they simply listen to them (enactment effect). Previous studies have shown that individuals with Autism Spectrum Disorders (ASD) have difficulties with processes involving the self, such as autobiographical memories and self performed actions. The present study aimed at assessing memory for action in Asperger Syndrome (AS). We investigated whether adults with AS would benefit from the enactment effect when recalling a list of previously performed items vs. items that were only visually and verbally experienced through three experimental tasks (Free Recall, Old/New Recognition and Source Memory). The results showed that while performance on Recognition and Source Memory tasks was preserved in individuals with AS, the enactment effect for self-performed actions was not consistently present, as revealed by the lower number of performed actions being recalled on the Free Recall test, as compared to adults with typical development. Subtle difficulties in encoding specific motor and proprioceptive signals during action execution in individuals with AS might affect retrieval of relevant personal episodic information. These disturbances might be associated to an impaired action monitoring system.  相似文献   

7.
Cognitive potentials measured in players during computer games were used as a tool to assess the number of possible cognitive requests (NPCR) between two mouse clicks. The data obtained in recording cognitive evoked potentials (EP) with pressing a button allowed us to count the frequency of requests towards conscious cognitive processes in the working memory, which was associated with the number of operations of comparison (matching), decision-making, and triggering an action.  相似文献   

8.
The link between many neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, and the aberrant folding and aggregation of proteins has prompted a comprehensive search for small organic molecules that have the potential to inhibit such processes. Although many compounds have been reported to affect the formation of amyloid fibrils and/or other types of protein aggregates, the mechanisms by which they act are not well understood. A large number of compounds appear to act in a nonspecific way affecting several different amyloidogenic proteins. We describe here a detailed study of the mechanism of action of one representative compound, lacmoid, in the context of the inhibition of the aggregation of the amyloid β-peptide (Aβ) associated with Alzheimer's disease. We show that lacmoid binds Aβ(1-40) in a surfactant-like manner and counteracts the formation of all types of Aβ(1-40) and Aβ(1-42) aggregates. On the basis of these and previous findings, we are able to rationalize the molecular mechanisms of action of nonspecific modulators of protein self-assembly in terms of hydrophobic attraction and the conformational preferences of the polypeptide.  相似文献   

9.
Role of calpains in diabetes mellitus: a mini review   总被引:1,自引:0,他引:1  
Type 2 diabetes mellitus (T2DM) is characterized by defects in haepatic glucose production, insulin action and insulin secretion, which can also lead to a variety of secondary disorders. The disease can lead to death without treatment and it has been predicted that T2DM will affect 215 million people world-wide by 2010. T2DM is a multifactorial condition whose precise genetic causes and biochemical defects have not been fully elucidated but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of non-coding polymorphisms in CAPN10 to be functionally associated with T2DM whilst the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. The presence of both calpain 10 and its mRNA have been demonstrated in tissues from several mammalian species whilst calpain 10 appears to be associated with pathways involved in glucose metabolism, insulin secretion and insulin action. It appears that other calpains may also participate in these pathways and here we present an overview of recent studies on calpains and their putative role in T2DM.  相似文献   

10.
The plasma membrane (PM) sphingolipid composition is the result of a series of well-known metabolic pathways comprising neobiosynthesis in the endoplasmic reticulum and in the Golgi apparatus followed by vesicular delivery to the plasma membrane, membrane turnover with final catabolism in lysosomes, and shedding of membrane components. In addition to this, the head group of PM sphingolipids can be opportunely modified by the action of PM associated hydrolases and transferases. The number of enzymes for glycosphingolipid metabolism that have been shown to be associated with the plasma membrane and the information on their properties are growing very rapidly. In this review, we will focus on the possible role and on the involvement of the plasma membrane-associated glycohydrolases in modulating cell functions.  相似文献   

11.
Type 2 diabetes mellitus (T2DM) is characterized by defects in haepatic glucose production, insulin action and insulin secretion, which can also lead to a variety of secondary disorders. The disease can lead to death without treatment and it has been predicted that T2DM will affect 215 million people world-wide by 2010. T2DM is a multifactorial condition whose precise genetic causes and biochemical defects have not been fully elucidated but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of non-coding polymorphisms in CAPN10 to be functionally associated with T2DM whilst the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. The presence of both calpain 10 and its mRNA have been demonstrated in tissues from several mammalian species whilst calpain 10 appears to be associated with pathways involved in glucose metabolism, insulin secretion and insulin action. It appears that other calpains may also participate in these pathways and here we present an overview of recent studies on calpains and their putative role in T2DM. (Mol Cell Biochem 261: 161–167, 2004)  相似文献   

12.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β(1) integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β(1) integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.  相似文献   

13.
Ecroyd H  Carver JA 《The FEBS journal》2008,275(5):935-947
Protein aggregation can proceed via disordered or ordered mechanisms, with the latter being associated with amyloid fibril formation, which has been linked to a number of debilitating conditions including Alzheimer's, Parkinson's and Creutzfeldt-Jakob diseases. Small heat-shock proteins (sHsps), such as alphaB-crystallin, act as chaperones to prevent protein aggregation and are thought to play a key role in the prevention of protein-misfolding diseases. In this study, we have explored the potential for small molecules such as arginine and guanidine to affect the chaperone activity of alphaB-crystallin against disordered (amorphous) and ordered (amyloid fibril) forms of protein aggregation. The effect of these additives is highly dependent upon the target protein undergoing aggregation. Importantly, our results show that the chaperone action of alphaB-crystallin against aggregation of the disease-related amyloid fibril forming protein alpha-synucleinA53T is enhanced in the presence of arginine and similar positively charged compounds (such as lysine and guanidine). Thus, our results suggest that target protein identity plays a critical role in governing the effect of small molecules on the chaperone action of sHsps. Significantly, small molecules that regulate the activity of sHsps may provide a mechanism to protect cells from the toxic protein aggregation that is associated with some protein-misfolding diseases.  相似文献   

14.
The status of insulin-receptor interactions in a variety of insulin-resistant states is reviewed. Utilizing large adipocytes from adult rats and small fat cells from young rats, we have conducted a series of in vitro experiments in an attempt to determine the cellular alteration(s) responsible for the insulin resistance associated with obesity. Stimulation of glucose oxidation by insulin is reduced in large cells. Studies using a mimicker of insulin action, spermine, as well as measurements of 125I-insulin binding to large and small cells indicate that receptor number and affinity are not responsible for hormone resistance. Furthermore, when rapid and direct measurements of sugar uptake were made, insulin stimulation was virtually identical in both cell types. These findings indicate that large adipocytes have an efficient insulin-responsive D-glucose transport system and suggest that the apparent hormone resistance may be due to alterations in intracellular glucose metabolism. It has been proposed that altered insulin-receptor interaction underlies the insulin resistance of human obesity. We have investigated this particular aspect of insulin action by 125I-insulin binding studies. Similar numbers of insulin receptors per cell and affinity for insulin were observed in adipocytes obtained from normal weight subjects and morbidly obese patients. Thus, the initial step in insulin action is unaltered in human obesity.  相似文献   

15.
The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the serotoninergic system: treatment with drugs (such as the SSRI fluoxetine) markedly stimulates mitosis in the progenitor cells of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a) on the labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These experiments show that (i) Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus. The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a) depends upon Trk receptor activation, since it was prevented by icv infusion of K252a. (ii) These receptors are required for both the first 7 days of fluoxetine action, during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and have both clinical and experimental interest.  相似文献   

16.
17.
Peptic ulcers are the most frequent side effect of therapy with non-steroidal anti-inflammatory drugs (NSAIDs). Good experimental evidence exists that pathogenesis of peptic ulcers cannot be attributed only to inhibition of cyclooxygenases. The knowledge about other molecular mechanisms of drug action associated with development of peptic ulcers could be useful for design of new safer NSAIDs. However, considerable time and material resources are needed for corresponding experimental studies. For simplification of the experimental search, we have developed an approach for in silico identification of putative molecular mechanisms of drug actions associated with their side effects. We have generated a data set of 85 NSAIDs, which includes information about their structures and side effects. Unknown molecular mechanisms of action of these NSAIDs were evaluated by the computer program PASS (Prediction of Activity Spectra for Substances) predicting more than 3000 molecular mechanisms of action based on structural formula of sub-stances. Statistically significant associations have been found between predicted molecular mechanisms of action and development of peptic ulcers. Twenty six molecular mechanisms of action probably associated with development of peptic ulcers have been found: two of them were known previously and 24 were quite new. Analyzing Gene Ontology data, data on signal and metabolic pathways, and available MEDLINE publication data, we proposed hypotheses on the role of 10 molecular mechanisms of action in the pathogenesis of peptic ulcer.  相似文献   

18.
Crosses between two species of deer mouse (Peromyscus) yield dramatic parent-of-origin effects. Female P. maniculatus (BW) crossed with male P. polionotus (PO) produce animals smaller than either parent. PO females crossed with BW males yield lethal overgrowth that has been associated with loss-of-imprinting (LOI). Previously, we mapped two loci influencing fetal growth. These two loci, however, do not account for the LOI, nor for the dysmorphic phenotypes. Here we report that maternal genetic background strongly influences the LOI. Analyses of crosses wherein maternal genetic background is varied suggest that this effect is likely due to the action of a small number of loci. We have termed these putative loci Meil. Estimation of Meil loci number was confounded by skewed allelic ratios in the intercross line employed. We show that the Meil loci are not identical to any of the DNA methyltransferases shown to be involved in regulation of genomic imprinting.  相似文献   

19.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down-regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity-dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity-dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output.  相似文献   

20.
Exposure of confluent NRK cells to transforming growth factor-beta (TGF-beta) results in distinct alterations in subpopulations of plasma membrane epidermal growth factor (EGF) receptors. The low affinity sites increase in number, whereas the high affinity sites undergo a transient decrease in affinity followed by a prolonged increase in number. Cycloheximide inhibits both of these effects. Functional assays measuring EGF-stimulated thymidine incorporation in the presence of TGF-beta show that the resulting long-term stimulation of EGF receptor binding is associated with an increased sensitivity to EGF. Similarly, the initial, transient decrease in EGF binding is associated with a temporary inhibition of EGF-stimulated thymidine incorporation. The results describe a bifunctional effect of TGF-beta at the biochemical level consistent with the action of this peptide on NRK cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号