首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of posture on arterial baroreflex control of heart rate in humans   总被引:1,自引:0,他引:1  
Altered baroreflex function may contribute to the cardiovascular changes associated with weightlessness. Since central blood volume (CBV) increases during simulated weightlessness we have examined the possibility that acute changes in CBV may modify baroreceptor function. We used graded head-up tilt (HUT) and head-down tilt (HDT) to induce changes in CBV, and neck suction to stimulate carotid baroreceptors, in 6 subjects. The increase in pulse interval induced by a negative pressure of 8.2 kPa (62 mm Hg) imposed for 10 s while supine was compared with the increase while tilted for 8 min at +/- 15 degrees, +/- 30 degrees and +/- 45 degrees. During HDT at 15 degrees the pulse interval over the first 5 cardiac cycles following suction onset was 51 +/- (SEM) 18 ms longer (p less than 0.05), at 30 degrees it was 61 +/- 20 ms longer (p less than 0.05), and at 45 degrees it was 74 +/- 35 ms longer (p less than 0.01), compared with supine. During HUT at 15 degrees the pulse interval was 25 +/- 9 ms shorter (p less than 0.05) than when supine, but was not significantly different at 30 degrees and 45 degrees. These responses occurred independently of changes in brachial blood pressure. Attenuation was also observed after 5 min (56 +/- 17 ms; less than 0.05), and after 40 min (25 +/- 9 ms; p less than 0.05) of 60 degrees HUT compared with supine. We conclude that posture does modify arterial baroreflex control of heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To examine how long-lasting microgravity simulated by 6 degrees head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60 degrees HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60 degrees HUT was not different between before and after HDBR, but mean blood pressure decreased in 60 degrees HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.  相似文献   

3.
We studied vagally mediated carotid baroreceptor-cardiac reflexes in 11 healthy men before, during, and after 30 days of 6 degrees head-down bed rest to test the hypothesis that baroreflex malfunction contributes to orthostatic hypotension in this model of simulated microgravity. Sigmoidal baroreflex response relationships were provoked with ramped neck pressure-suction sequences comprising pressure elevations to 40 mmHg followed by serial R-wave-triggered 15-mmHg reductions to -65 mmHg. Each R-R interval was plotted as a function of systolic pressure minus the neck chamber pressure applied during the interval. Compared with control measurements, base-line R-R intervals and the minimum, maximum, range, and maximum slope of the R-R interval-carotid pressure relationships were reduced (P less than 0.05) from bed rest day 12 through recovery day 5. Baroreflex slopes were reduced more in four subjects who fainted during standing after bed rest than in six subjects who did not faint (-1.8 +/- 0.7 vs. -0.3 +/- 0.3 ms/mmHg, P less than 0.05). There was a significant linear correlation (r = 0.70, P less than 0.05) between changes of baroreflex slopes from before bed rest to bed rest day 25 and changes of systolic blood pressure during standing after bed rest. Although plasma volume declined by approximately 15% (P less than 0.05), there was no significant correlation between reductions of plasma volume and changes of baroreflex responses. There were no significant changes of before and after plasma norepinephrine or epinephrine levels before and after bed rest during supine rest or sitting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Complete ganglion blockade alters dynamic cerebral autoregulation, suggesting links between systemic autonomic traffic and regulation of cerebral blood flow velocity. We tested the hypothesis that acute head-down tilt, a physiological maneuver that decreases systemic sympathetic activity, would similarly disrupt normal dynamic cerebral autoregulation. We studied 10 healthy young subjects (5 men and 5 women; age 21 +/- 0.88 yr, height 169 +/- 3.1 cm, and weight 76 +/- 6.1 kg). ECG, beat-by-beat arterial pressure, respiratory rate, end-tidal CO2 concentration, and middle cerebral blood flow velocity were recorded continuously while subjects breathed to a metronome. We recorded data during 5-min periods and averaged responses from three Valsalva maneuvers with subjects in both the supine and -10 degrees head-down tilt positions (randomized). Controlled-breathing data were analyzed in the frequency domain with power spectral analysis. The magnitude of input-output relations were determined with cross-spectral techniques. Head-down tilt significantly reduced Valsalva phase IV systolic pressure overshoot from 36 +/- 4.0 (supine position) to 25 +/- 4.0 mmHg (head down) (P = 0.03). Systolic arterial pressure spectral power at the low frequency decreased from 5.7 +/- 1.6 (supine) to 4.4 +/- 1.6 mmHg2 (head down) (P = 0.02), and mean arterial pressure spectral power at the low frequency decreased from 3.3 +/- 0.79 (supine) to 2.0 +/- 0.38 mmHg2 (head down) (P = 0.05). Head-down tilt did not affect cerebral blood flow velocity or the transfer function magnitude and phase angle between arterial pressure and cerebral blood flow velocity. Our results show that in healthy humans, mild physiological manipulation of autonomic activity with acute head-down tilt has no effect on the ability of the cerebral vasculature to regulate flow velocity.  相似文献   

5.
Adaptation to spaceflight or head-down-tilt bed rest leads to hypovolemia and an apparent abnormality of baroreflex regulation of cardiac period. In a previous study, we demonstrated that both chronic (2 wk) head-down-tilt bed rest and acute induced hypovolemia led to similar impairments in spontaneous baroreflex control of cardiac period, suggesting that a reduction in plasma volume may be responsible for this abnormality after bed rest. Therefore we hypothesized that this reduced "baroreflex function" could be restored by intravenous volume infusion equivalent to the reduction in plasma volume after bed rest. Six healthy subjects underwent 2 wk of -6 degrees head-down bed rest. Beat-by-beat arterial blood pressure and ECG were recorded during 6 min of spontaneous respiration and fixed-rate breathing (0.2 Hz), and transfer function analysis between systolic blood pressure and R-R interval was performed. Plasma volume was measured with Evans blue dye, and cardiac filling pressures were directly measured (Swan-Ganz catheter). After bed rest, studies were repeated before and after plasma volume restoration, with which both plasma volume and left ventricular end-diastolic pressure were restored to pre-bed rest levels by intravenous dextran40 infusion (288 +/- 31 ml). Transfer function gain in the high-frequency range, used as an index of vagally mediated arterial-cardiac baroreflex function, decreased significantly (13.4 +/- 3.1 to 8.1 +/- 2.9 ms/mmHg, P < 0.05) after bed rest. However, reduced transfer function gain was normalized to the pre-bed rest level (12.2 +/- 3.6 ms/mmHg) after precise plasma volume restoration. This result confirms that reductions in plasma volume, rather than a unique autonomic nervous system adaptation to bed rest, are largely responsible for the observed changes in spontaneous arterial-cardiac baroreflex function after bed rest.  相似文献   

6.
Postural stress requires immediate autonomic nervous action to maintain blood pressure. We determined time-domain cardiac baroreflex sensitivity (BRS) and time delay (tau) between systolic blood pressure and interbeat interval variations during stepwise changes in the angle of vertical body axis (alpha). The assumption was that with increasing postural stress, BRS becomes attenuated, accompanied by a shift in tau toward higher values. In 10 healthy young volunteers, alpha included 20 degrees head-down tilt (-20 degrees), supine (0 degree), 30 and 70 degrees head-up tilt (30 degrees, 70 degrees), and free standing (90 degrees). Noninvasive blood pressures were analyzed over 6-min periods before and after each change in alpha. The BRS was determined by frequency-domain analysis and with xBRS, a cross-correlation time-domain method. On average, between 28 (-20 degrees) to 45 (90 degrees) xBRS estimates per minute became available. Following a change in alpha, xBRS reached a different mean level in the first minute in 78% of the cases and in 93% after 6 min. With increasing alpha, BRS decreased: BRS = -10.1.sin(alpha) + 18.7 (r(2) = 0.99) with tight correlation between xBRS and cross-spectral gain (r(2) approximately 0.97). Delay tau shifted toward higher values. In conclusion, in healthy subjects the sensitivity of the cardiac baroreflex obtained from time domain decreases linearly with sin(alpha), and the start of baroreflex adaptation to a physiological perturbation like postural stress occurs rapidly. The decreases of BRS and reduction of short tau may be the result of reduced vagal activity with increasing alpha.  相似文献   

7.
The "push-pull" effect denotes the reduced tolerance to +G(z) (hypergravity) when +G(z) stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative G(z). The purpose of this study was to test the hypothesis that an exaggerated, myogenically mediated rise in leg vascular conductance contributes to the push-pull effect, using heart level arterial blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30 degrees head-up tilt) and push-pull (30 s of 30 degrees head-up tilt immediately preceded by 10 s of -15 degrees head-down tilt) gravitational stress after administration of hexamethonium (5 mg/kg) to inhibit autonomic ganglionic neurotransmission in seven dogs. Cardiac output or thigh level arterial pressure (myogenic stimulus) was maintained constant by computer-controlled ventricular pacing. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. Following the onset of head-up tilt, the magnitude of the fall in heart level arterial pressure from baseline was -11.6 +/- 2.9 and -17.1 +/- 2.2 mmHg for the control and push-pull trials, respectively (P < 0.05), when cardiac output was maintained constant. Over 40% of the exaggerated fall in heart level arterial pressure was attributable to an exaggerated rise in hindlimb vascular conductance (P < 0.05). Maintaining thigh level arterial pressure constant abolished the exaggerated rise in hindlimb blood flow. Thus a push-pull effect largely attributable to a myogenically induced rise in leg vascular conductance occurs when autonomic function is inhibited.  相似文献   

8.
The purpose of this study was to evaluate the role of baroreceptor control on the postexercise threshold for forearm cutaneous vasodilation. On four separate days, six subjects (1 woman) were randomly exposed to 65 degrees head-up tilt and to 15 degrees head-down tilt during a No-Exercise and Exercise treatment protocol. Under each condition, a whole body water-perfused suit was used to regulate mean skin temperature (T(sk)) in the following sequence: 1) cooling until the threshold for vasoconstriction was evident; 2) heating ( approximately 7.0 degrees C/h) until vasodilation occurred; and 3) cooling until esophageal temperature (T(es)) and (T(sk)) returned to baseline values. The Exercise treatment consisted of 15 min of cycling exercise at 70% maximal O(2) uptake, followed by 15 min of recovery in the head-up tilt position. The No-Exercise treatment consisted of 30 min resting in the head-up tilt position. After the treatment protocols, subjects were returned to their pretreatment condition, then cooled and warmed again consecutively. The calculated T(es) threshold for cutaneous vasodilation increased 0.24 degrees C postexercise during head-up tilt (P < 0.05), whereas no difference was measured during head-down tilt. In contrast, sequential measurements without exercise demonstrate a time-dependent decrease for head-up tilt (0.17 degrees C) and no difference for head-down tilt. Pretreatment thresholds were significantly lower during head-down tilt compared with head-up tilt. We have shown that manipulating postexercise venous pooling by means of head-down tilt, in an effort to reverse its impact on baroreceptor unloading, resulted in a relative lowering of the resting postexercise elevation in the T(es) for forearm cutaneous vasodilation.  相似文献   

9.
Postural baroreflex stimuli may affect EEG arousal and sleep in humans   总被引:2,自引:0,他引:2  
Past research has shown that baroreceptor stimulation can induce sleep. The present study investigated whether the upright posture inhibits sleep by reducing baroreceptor firing. Twenty-eight men were each exposed to four conditions on separate days: 40 degrees head-up tilt with (TP) and without (TN) 45 mmHg positive pressure on the legs and the supine position with (SP) and without (SN) leg pressure. Heart rate and blood pressure changes indicated that baroreceptor firing was strongly reduced by TN and only mildly reduced by TP in 24 subjects. Baroreceptor effects of SP were unclear. SN and SP did not differ significantly in their effects on electroencephalogram (EEG) sleep. Among subjects who showed a normal baroreflex response to tilt, both TN and TP inhibited sleep, but TN caused a persistent elevation of EEG beta activity that did not occur in TP plus a greater delay in sleep onset. TN had no such arousing effects in four subjects who showed little or no baroreflex response to tilt. These results are consistent with the hypothesis that the fall in baroreceptor firing produced by the upright posture contributes to EEG arousal.  相似文献   

10.
Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors.  相似文献   

11.
Tolerance to positive vertical acceleration (Gz) gravitational stress is reduced when positive Gz stress is preceded by exposure to hypogravity, which is called the "push-pull effect." The purpose of this study was to test the hypothesis that baroreceptor reflexes contribute to the push-pull effect by augmenting the magnitude of simulated hypogravity and thereby augmenting the stimulus to the baroreceptors. We used eye-level blood pressure as a measure of the effectiveness of the blood pressure regulatory systems. The approach was to augment the magnitude of the carotid hypertension (and the hindbody hypotension) when hypogravity was simulated by head-down tilt by mechanically occluding the terminal aorta and the inferior vena cava. Sixteen anesthetized Sprague-Dawley rats were instrumented with a carotid artery catheter and a pneumatic vascular occluder cuff surrounding the terminal aorta and inferior vena cava. Animals were restrained and subjected to a control gravitational (G) profile that consisted of rotation from 0 Gz to 90 degrees head-up tilt (+1 Gz) for 10 s and a push-pull G profile consisting of rotation from 0 Gz to 90 degrees head-down tilt (-1 Gz) for 2 s immediately preceding 10 s of +1 Gz stress. An augmented push-pull G profile consisted of terminal aortic vascular occlusion during 2 s of head-down tilt followed by 10 s of +1 Gz stress. After the onset of head-up tilt, the magnitude of the fall in eye-level blood pressure from baseline was -20 +/- 1.3, -23 +/- 0.7, and -28 +/- 1.6 mmHg for the control, push-pull, and augmented push-pull conditions, respectively, with all three pairwise comparisons achieving statistically significant differences (P < 0.01). Thus augmentation of negative Gz stress with vascular occlusion increased the magnitude of the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

12.
Tolerance to +G(z) stress is reduced by preceding exposure to -G(z) (push-pull effect). The mechanism(s) responsible for this effect are not fully understood, although the arterial baroreceptor reflexes have been implicated. We investigated the integrative response of the autonomic nervous system by studying responses to gravitational stress before and after autonomic function was inhibited by hexamethonium in 10 isoflurane-anesthetized male and female Sprague-Dawley rats. Animals were restrained supine and subjected to two rotations imposed about the x-axis: 1) a control G profile consisting of rotation from 0 G(z) (+1 G(y)) to 90 degrees head-up tilt (+1 G(z)) for 10 s and 2) a push-pull G profile consisting of rotation from 0 G(z) to 90 degrees head-down tilt (-1 G(z)) for 2 s immediately preceding 10 s of +1 G(z) stress. Eight G profiles consisting of equal numbers of control and push-pull trials were imposed by using a counterbalanced design. We found that hexamethonium lowered baseline arterial pressure and abolished the push-pull effect. The lack of a push-pull effect after autonomic blockade persisted when arterial pressure was restored to baseline levels by phenylephrine infusion. Lowering baseline arterial pressure by sodium nitroprusside infusion or by hemorrhage when autonomic function was intact also abolished the push-pull effect. We conclude that intact autonomic function and a normal baseline arterial pressure are needed for expression of the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

13.
It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under alpha-chloralose (40 mg/kg) and urethane (800 mg/kg i.p.) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 microg i.v.) and phenylephrine (10 microg i.v.). Left ventricular epicardial application of capsaicin (0.4 microg in 2 microl) blunted arterial baroreflex function by 46% (maximum slope 3.5 +/- 0.3 to 1.9 +/- 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 +/- 0.3 to 1.9 +/- 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 microl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 +/- 0.4 to 3.1 +/- 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.  相似文献   

14.
To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60 degrees head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 +/- 4 bursts/min; change in total activity: 209 +/- 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 +/- 4 bursts/min; change in total activity: 251 +/- 52 U/min, n = 6, all P > 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans.  相似文献   

15.
Hemodynamic alterations during balloon carotid angioplasty (BCA) and stenting have been ascribed to the consequences of direct carotid baroreceptor stimulation during balloon inflation. BCA with stenting in patients with carotid atheromatous stenoses offers a unique opportunity for elucidating the cardiovascular autonomic response to direct transient intravascular stimulation of the baroreceptors. We analysed the consequences of BCA on the autonomic control of heart rate and on breathing components in nine patients with atheromatous stenoses involving the bifurcation and the internal carotid. A time-frequency domain method, the smoothed pseudo-Wigner-Ville transform (SPWVT), was used to evaluate the spectral parameters (i.e., the instantaneous amplitude and centre frequency (ICF) of the cardiovascular and respiratory oscillations). Those parameters and their dynamics (8 and 24 h later) were evaluated during and after the procedure. BCA stimulates baroreceptors in all patients, which markedly reduces heart rate and blood pressure. Vagal baroreflex activation altered the respiratory sinus arrhythmia in terms of amplitude and frequency (ICF HF RR shifted from 0.27 +/- 0.03 to 0.23 +/- 0.04 Hz pre-BCA vs. BCA, respectively; p < 0.01). Both the high- and low-frequency amplitudes of heart rate oscillations were altered during carotid baroreceptor stimulation, strongly supporting a contribution of the baroreflex to the generation of both oscillations of heart rate. Carotid baroreceptors stimulation increased the inspiratory time (Ti) (1.5 +/- 0.5 to 2.3 +/- 0.6 s pre-BCA vs. BCA, respectively; p < 0.01). In awake patients, BCA with stenting of atheromatous stenosis involving the bifurcation and internal carotid causes marked changes in the cardiac autonomic and respiratory control systems.  相似文献   

16.
卧床前后压力感受性反射机能变化的研究   总被引:2,自引:0,他引:2  
许多数据表明长期失重以后立位耐力降低可能与压力感受性反射功能的改变有关。本文比较了两组被试者15天低动力卧床前后的立位耐力。以血压调节模型为基础分析了两种不同方式卧床前后单纯立位和下身负压加立位时压力感受性反射功能的改变,并用颈部加压及下身负压对中枢调节功能改变进行了观察。结果表明严格的头低位卧床后,立位耐力下降及压力感受性反射功能改变明显大于半日平卧半日倚坐者。而压力感受性反射功能的改变,特别是中枢神经系统调节功能的紊乱,是卧床后立位耐力降低的主要原因。从这种考虑为基础,作者提出了改变失重或模拟失重状态下的血液分布,调整对压力感受器的刺激,可能是预防心血管失调的有效方法。  相似文献   

17.
In the present study, to test the hypothesis that exercise-heat acclimation increases orthostatic tolerance via the improvement of cardiac baroreflex control in heated humans, we examined cardiac baroreflex and thermoregulatory responses, including cutaneous vasomotor and sudomotor responses, during whole body heating before and after a 6-day exercise-heat acclimation program [4 bouts of 20-min exercise at 50% peak rate of oxygen uptake separated by 10-min rest in the heat (36 degrees C; 50% relative humidity)]. Ten healthy young volunteers participated in the study. On the test days before and after the heat acclimation program, subjects underwent whole body heat stress produced by a hot water-perfused suit during supine rest for 45 min and 75 degrees head-up tilt (HUT) for 6 min. The sensitivity of the arterial baroreflex control of heart rate (HR) was calculated from the spontaneous changes in beat-to-beat arterial pressure and HR. The HUT induced a presyncopal sign in seven subjects in the preacclimation test and in six subjects in the postacclimation test, and the tilting time did not differ significantly between the pre- (241 +/- 33 s) and postacclimation (283 +/- 24 s) tests. Heat acclimation did not change the slope in the HR-esophageal temperature (Tes) relation and the cardiac baroreflex sensitivity during heating. Heat acclimation decreased (P < 0.05) the Tes thresholds for cutaneous vasodilation in the forearm and dorsal hand and for sweating in the forearm and chest. These findings suggest that short-term heat acclimation does not alter the spontaneous baroreflex control of HR during heat stress, although it induces adaptive change of the heat dissipation response in nonglabrous skin.  相似文献   

18.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

19.
Acetylcholine receptors (AChR) are important in premotor and efferent control of autonomic function; however, the extent to which cardiovascular function is affected by genetic variations in AChR sensitivity is unknown. We assessed heart rate variability (HRV) and baroreflex sensitivity (BRS) in rats bred for resistance (FRL) or sensitivity (FSL) to cholinergic agents compared with Sprague-Dawley rats (SD), confirmed by using hypothermic responses evoked by the muscarinic agonist oxotremorine (0.2 mg/kg i.p.) (n > or = 9 rats/group). Arterial pressure, ECG, and splanchnic sympathetic (SNA) and phrenic (PNA) nerve activities were acquired under anesthesia (urethane 1.3 g/kg i.p.). HRV was assessed in time and frequency domains from short-term R-R interval data, and spontaneous heart rate BRS was obtained by using a sequence method at rest and after administration of atropine methylnitrate (mATR, 2 mg/kg i.v.). Heart rate and SNA baroreflex gains were assessed by using conventional pharmacological methods. FRL and FSL were normotensive but displayed elevated heart rates, reduced HRV and HF power, and spontaneous BRS compared with SD. mATR had no effect on these parameters in FRL or FSL, indicating reduced cardiovagal tone. FSL exhibited reduced PNA frequency, longer baroreflex latency, and reduced baroreflex gain of heart rate and SNA compared with FRL and SD, indicating in FSL dual impairment of cardiac and circulatory baroreflexes. These findings show that AChR resistance results in reduced cardiac muscarinic receptor function leading to cardiovagal insufficiency. In contrast, AChR sensitivity results in autonomic and respiratory abnormalities arising from alterations in central muscarinic and or other neurotransmitter receptors.  相似文献   

20.
Phenylephrine (PE) bolus and infusion methods have both been used to measure baroreflex sensitivity in humans. To determine whether the two methods produce the same values of baroreceptor sensitivity, we administered intravenous PE by both bolus injection and graded infusion methods to 17 normal subjects. Baroreflex sensitivity was determined from the slope of the linear relationship between the cardiac cycle length (R-R interval) and systolic arterial pressure. Both methods produced similar peak increases in arterial pressure and reproducible results of baroreflex sensitivity in the same subjects, but baroreflex slopes measured by the infusion method (9.9 +/- 0.7 ms/mmHg) were significantly lower than those measured by the bolus method (22.5 +/- 1.8 ms/mmHg, P less than 0.0001). Pretreatment with atropine abolished the heart rate response to PE given by both methods, whereas plasma catecholamines were affected by neither method of PE administration. Naloxone pretreatment exaggerated the pressor response to PE and increased plasma beta-endorphin response to PE infusion but had no effect on baroreflex sensitivity. Thus our results indicate that 1) activation of the baroreflex by the PE bolus and infusion methods, although reproducible, is not equivalent, 2) baroreflex-induced heart rate response to a gradual increase in pressure is less than that seen with a rapid rise, 3) in both methods, heart rate response is mediated by the vagus nerves, and 4) neither the sympathetic nervous system nor the endogenous opiate system has a significant role in mediating the baroreflex control of heart rate to a hypertensive stimulus in normal subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号