首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two lectins with specificities for mannose and fucose have been isolated from human serum by affinity chromatography. One mannose-binding protein (MBP 1) has a native Mr of 700,000 with subunits of Mr 32,000 and has specificities for N-acetylglucosamine, N-acetylmannosamine and glucose as well as for mannose and fucose. The other mannose-binding protein (MBP 2) has a native Mr of 200,000 with subunits of Mr 28,000 and is specific only for mannose and fucose. MBP 2 appears to recognize the core sugars of asparagine-linked oligosaccharides as well as the terminal sugars. Both lectins are calcium-dependent, requiring approx. 0.095 mM calcium for half-maximal binding. MBP 1 binds maximally between pH 7-9, whereas MBP 2 has a pH optimum of 6-7. The binding activity of both proteins decreases rapidly below pH 5. The apparent association constants (Ka) for binding to mannon are 2.1 X 10(8) M-1 for MBP 1 and 1.3 X 10(8) M-1 for MBP 2. These data provide further evidence of the complex nature of mammalian carbohydrate recognition systems.  相似文献   

2.
The crystal structure of a fucose-binding lectin from the bacteria Pseudomonas aeruginosa in complex with α-L-fucose has been recently determined. It is a tetramer; each monomer displays a nine-stranded, antiparallel, β-sandwiched arrangement and contains two calcium ions that mediate the binding of fucose in a recognition mode unique among protein-carbohydrate interactions. In search of this type of unique interactions in other newly discovered protein sequences, we have used molecular modeling techniques to predict and analyze the 3-D structures of some proteins, which exhibited reasonable degree of homology with the amino acid sequence of the bacterial protein. A BLAST search with the sequence of Pseudomonas aeruginosa as query in the non-redundant sequence database identified four proteins from different species, three organisms from bacteria and one from archaea. We have modeled the structures of these proteins as well as those of the complexes with carbohydrates and studied the nature of physicochemical forces involved in the complex formation both in presence and absence of calcium. The calcium-binding loops have been found to be highly conserved both in terms of primary and tertiary structures in these proteins, although a less acidic character is observed in Photorhabdus lectin due to the absence of two aspartic acid residues on the calcium-binding loop which also resulted in lower binding affinity. All these structures exhibited highly negative electrostatic environment in the vicinity of the calcium-binding loops which was essential for neutralizing the positive charges of two closely situated Ca+2 ions. The comparison of the binding affinities of some monosaccharides other than fucose, e.g. mannose and fructose, showed higher binding energies confirming the fucose specificity of these proteins.  相似文献   

3.
Rabbit alveolar macrophages express a plasma-membrane receptor that recognizes glycoprotein ligands bearing terminal mannose, fucose or N-acetylglucosamine residues. Macrophage membranes were washed extensively with buffers containing high salt and mannose or EDTA to remove endogenously bound ligand, before Triton X-100 extraction. The extracts were chromatographed on mannose-Sepharose. Elution with mannose, followed by dialysis and a second mannose-Sepharose step with EDTA elution, produced a preparation that migrated as single protein band of Mr 175,000 on SDS/polyacrylamide-gel electrophoresis. The purified protein binds mannose-BSA (bovine serum albumin) with a dissociation constant of 1.9 X 10(-8) M. Ligand binding is Ca2+ and pH-dependent, with maximal binding at neutral pH and low binding below pH 6.0. The binding of 125I-mannose-BSA is inhibited by ligands bearing high-mannose oligosaccharides, such as mannan or beta-glucuronidase, as well as the monosaccharides mannose, fucose and N-acetylglucosamine. Galactose, galactosylated BSA, glucose and mannose 6-phosphate are non-inhibitory. Amino acid compositional analyses indicate that the receptor contains high concentrations of aspartate/asparagine and glutamate/glutamine, and low amounts of methionine. The carbohydrate composition was studied by lectin overlays of electrophoretically transferred receptor, and the results indicate the presence of N-linked complex and O-linked sialylated oligosaccharides. A protein of Mr 175,000 was immunoprecipitated from radio-iodinated macrophage membranes with an antibody generated against purified rabbit lung mannose receptor.  相似文献   

4.
The purple pigmented bacterium Chromobacterium violaceum is a dominant component of tropical soil microbiota that can cause rare but fatal septicaemia in humans. Its sequenced genome provides insight into the abundant potential of this organism for biotechnological and pharmaceutical applications and allowed an ORF encoding a protein that is 60% identical to the fucose binding lectin (PA-IIL) from Pseudomonas aeruginosa and the mannose binding lectin (RS-IIL) from Ralstonia solanacearum to be identified. The lectin, CV-IIL, has recently been purified from C. violaceum [Zinger-Yosovich, K., Sudakevitz, D., Imberty, A., Garber, N. C., and Gilboa-Garber, N. (2006) Microbiology 152, 457-463] and has been confirmed to be a tetramer with subunit size of 11.86 kDa and a binding preference for fucose. We describe here the cloning of CV-IIL and its expression as a recombinant protein. A complete structure-function characterization has been made in an effort to analyze the specificity and affinity of CV-IIL for fucose and mannose. Crystal structures of CV-IIL complexes with monosaccharides have yielded the molecular basis of the specificity. Each monomer contains two close calcium cations that mediate the binding of the monosaccharides, which occurs in different orientations for fucose and mannose. The thermodynamics of binding has been analyzed by titration microcalorimetry, giving dissociation constants of 1.7 and 19 microM for alpha-methyl fucoside and alpha-methyl mannoside, respectively. Further analysis demonstrated a strongly favorable entropy term that is unusual in carbohydrate binding. A comparison with both PA-IIL and RS-IIL, which have binding preferences for fucose and mannose, respectively, yielded insights into the monosaccharide specificity of this important class of soluble bacterial lectins.  相似文献   

5.
Cell interactions during mouse development have been shown to involve carbohydrate-containing macromolecules (glycoconjugates). We have therefore used a series of fluorescein-labelled synthetic glycoproteins to determine if mouse oocytes and zygotes also express sugar binding molecules (endogenous lectins) which might participate in such interactions. Unfertilized secondary oocytes did not express endogenous lectins at 4 degrees C but a low level of expression of fucose, mannose, and galactose-binding activity could be detected at 37 degrees C. In contrast, the zygote clearly expressed three classes of endogenous lectins, with preferential binding for i) fucose or mannose, ii) glucose or galactose, and iii) lactose. The expression of these lectins was much reduced at 4 degrees C and maximal binding at 37 degrees C was achieved only after 2 h incubation. We therefore conclude that a low level of endogenous lectin expression in the mouse oocyte is greatly enhanced after fertilisation and that, at both stages, expression, or the detection of expression, is markedly temperature dependent.  相似文献   

6.
Langerin mediates the carbohydrate-dependent uptake of pathogens by Langerhans cells in the first step of antigen presentation to the adaptive immune system. Langerin binds to an unusually diverse number of endogenous and pathogenic cell surface carbohydrates, including mannose-containing O-specific polysaccharides derived from bacterial lipopolysaccharides identified here by probing a microarray of bacterial polysaccharides. Crystal structures of the carbohydrate-recognition domain from human langerin bound to a series of oligomannose compounds, the blood group B antigen, and a fragment of β-glucan reveal binding to mannose, fucose, and glucose residues by Ca2+ coordination of vicinal hydroxyl groups with similar stereochemistry. Oligomannose compounds bind through a single mannose residue, with no other mannose residues contacting the protein directly. There is no evidence for a second Ca2+-independent binding site. Likewise, a β-glucan fragment, Glcβ1-3Glcβ1-3Glc, binds to langerin through the interaction of a single glucose residue with the Ca2+ site. The fucose moiety of the blood group B trisaccharide Galα1-3(Fucα1-2)Gal also binds to the Ca2+ site, and selective binding to this glycan compared to other fucose-containing oligosaccharides results from additional favorable interactions of the nonreducing terminal galactose, as well as of the fucose residue. Surprisingly, the equatorial 3-OH group and the axial 4-OH group of the galactose residue in 6SO4-Galβ1-4GlcNAc also coordinate Ca2+, a heretofore unobserved mode of galactose binding in a C-type carbohydrate-recognition domain bearing the Glu-Pro-Asn signature motif characteristic of mannose binding sites. Salt bridges between the sulfate group and two lysine residues appear to compensate for the nonoptimal binding of galactose at this site.  相似文献   

7.
We report the fine structure of a nearly contiguous series of N-glycans from the soil nematode Caenorhabditis elegans. Five major classes are revealed including high mannose, mammalian-type complex, hybrid, fuco-pausimannosidic (five mannose residues or fewer substituted with fucose), and phosphocholine oligosaccharides. The high mannose, complex, and hybrid N-glycan series show a high degree of conservation with the mammalian biosynthetic pathways. The fuco-pausimannosidic glycans contain a novel terminal fucose substitution of mannose. The phosphocholine oligosaccharides are high mannose type and are multiply substituted with phosphocholine. Although phosphocholine oligosaccharides are known immunomodulators in human nematode and trematode infections, C. elegans is unique as a non-parasitic nematode containing phosphocholine N-glycans. Therefore, studies in C. elegans should aid in the elucidation of the biosynthetic pathway(s) of this class of biomedically relevant compounds. Results presented here show that C. elegans has a functional orthologue for nearly every known enzyme found to be deficient in congenital disorders of glycosylation types I and II. This nematode is well characterized genetically and developmentally. Therefore, elucidation of its N-glycome, as shown in this report, may place it among the useful systems used to investigate human disorders of glycoconjugate synthesis such as the congenital disorders of glycosylation syndromes.  相似文献   

8.
Glycation of bovine serum albumin was measured for mannose and fucose at 37 degrees C. Mannose as well as fucose demonstrated an initial rapid increase in rate of formation of total adducts followed by a slower secondary reaction. The equilibrium constant for Schiff base formation was almost two times larger for mannose than fucose, although the Schiff base formed by fucose rearranged 1.5 times faster than that for mannose. Both sugars showed parallel lines for the formation of total and acid stable products after three hours. Discussion integrates new mechanistic data with previously suggested mechanisms.  相似文献   

9.
Two different mannose-binding proteins (MBP-A and MBP-C), which show 56% sequence identity, are present in rat serum and liver. It has previously been shown that MBP-A binds to a range of monosaccharide-bovine serum albumin conjugates, and that, among oligosaccharide ligands tested, preferential binding is to terminal nonreducing N-acetylglucosamine residues of complex type N-linked oligosaccharides. In order to compare the binding specificity of MBP-C, an expression system has been developed for production of a fragment of this protein which contains the COOH-terminal carbohydrate-recognition domain. After radioiodination, the domain has been used to probe natural glycoproteins, neoglycoproteins, and neoglycolipids. Like MBP-A, MBP-C binds several different monosaccharides conjugated to bovine serum albumin, including mannose, fucose, and N-acetylglucosamine, although binding to the last of these is relatively weaker than observed for MBP-A. The results of binding to natural glycoproteins and to neoglycolipids containing oligosaccharides derived from these proteins are most compatible with the interpretation that MBP-C interacts primarily with the trimannosyl core of complex N-linked oligosaccharides, with additional ligands being terminal fucose and perhaps also peripheral mannose residues of high mannose type oligosaccharides. This binding specificity is thus quite distinct from that of MBP-A. The presence of multiple MBPs with distinct binding specificities in preparations derived from serum and liver explains conflicting conclusions which have been reached about carbohydrate recognition by these proteins.  相似文献   

10.
A lectin with a high affinity for binding ligands through fucose residues has been purified to homogeneity from rat liver. Affinity chromatography of the lectin on fucosyl-bovine serum albumin-agarose is the key step in the purification. Contaminating amounts of a previously described lectin that binds mannose and N-acetylglucosamine are removed from the fucose-binding lectin by either immunoadsorption on anti-mannose/N-acetylglucosamine lectin IgG-agarose or by specific elution of the fucose-binding lectin from fucosyl-bovine serum albumin-agarose. The pure fucose-binding lectin contains two polypeptide subunits with molecular weights of 88,000 and 77,000, respectively, as judged by gel electrophoresis. Peptide maps of the subunits, however, show that they are very similar structurally. In addition, peptide maps show that the fucose lectin is structurally distinct from other rat hepatic lectins. This is supported by the lack of cross-reaction among the different rat liver lectins and their specific antibodies and the inability of specific antibodies to the mannose/N-acetylglucosamine lectin to inhibit the binding of fucosyl-bovine serum albumin by the fucose lectin.  相似文献   

11.
Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal αfucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical αfucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.  相似文献   

12.
The influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. In order to determine what structural features of the oligosaccharide were required for fucosylation or where in the processing pathway fucosylation occurred, influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, [5,6-3H]fucose and [1-14C]mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the [14C]mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the [14C]mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the [3H]fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the [14C]mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.  相似文献   

13.
The mode of binding of oligosaccharides to griffithsin, an antiviral lectin from the red alga Griffithsia sp., was investigated by a combination of X-ray crystallography, isothermal titration calorimetry, and molecular modeling. The structures of complexes of griffithsin with 1-->6alpha-mannobiose and with maltose were solved and refined at the resolution of 2.0 and 1.5 A, respectively. The thermodynamic parameters of binding of 1-->6alpha-mannobiose, maltose, and mannose to griffithsin were determined. Binding profiles of 1-->6alpha-mannobiose and mannose were similar with Kd values of 83.3 microM and 102 microM, respectively. The binding of maltose to griffithsin was significantly weaker, with a fourfold lower affinity (Kd = 394 microM). In all cases the binding at 30 degrees C was entropically rather than enthalpically driven. On the basis of the experimental crystal structures, as well as on previously determined structures of complexes with monosaccharides, it was possible to create a model of a tridentate complex of griffithsin with Man9GlcNAc2, a high mannose oligosaccharide commonly found on the surface of viral glycoproteins. All shorter oligomannoses could be modeled only as bidentate or monodentate complexes with griffithsin. The ability to mediate tight multivalent and multisite interactions with high-mannose oligosaccharides helps to explain the potent antiviral activity of griffithsin.  相似文献   

14.
Two mutants of the BW5147 mouse lymphoma cell line have been selected for their resistance to the toxic effects of pea lectin. These cell lines, termed PLR1.3 and PHAR1.8 PLR7.2, have a decreased number of high affinity pea lectin-binding sites (Trowbridge, I.S., Hyman, R., Ferson, T., and Mazauskas, C. (1978) Eur. J. Immunol. 8, 716-723). Intact cell labeling experiments using [2-3H]mannose indicated that PLR1.3 cells have a block in the conversion of GDP-[3H]mannose to GDP-[3H]fucose whereas PHAR1.8 PLR7.2 cells appear to be blocked in the transfer of fucose from GDP-[3H]fucose to glycoprotein acceptors. In vitro experiments with extracts of PLR1.3 cells confirmed the failure to convert GDP-mannose to GDP-fucose and indicated that the defect is in GDP-mannose 4,6-dehydratase (EC 4.2.1.47), the first enzyme in the conversion of GDP-mannose to GDP-fucose. The block in the PLR1.3 cells could be bypassed by growing the cells in the presence of fucose, demonstrating that an alternate pathway for the production of GDP-fucose presumably via fucose 1-phosphate is functional in this line. PLR1.3 cells grown in 10 mM fucose showed normal high affinity pea lectin binding. PHRA1.8 PLR7.2 cells synthesize GDP-fucose and have normal or increased levels of GDP-fucose:glycoprotein fucosyltransferase when assayed in vitro. The fucosyltransferases of this clone can utilize its own glycoproteins as fucose acceptors in in vitro assays. These findings indicate that this cell line fails to carry out the fucosyltransferase reaction in vivo despite the fact that it possesses the appropriate nucleotide sugar, glycoprotein acceptors, and fucosyltransferase. The finding of decreased glycoprotein fucose in two independent isolates of pea lectin-resistant cell lines and the restoration of high affinity pea lectin binding to PLR1.3 cells following fucose feeding strongly implicates fucose as a major determinant of pea lectin binding.  相似文献   

15.
The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.  相似文献   

16.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

17.
GCC185, a trans-Golgi network-localized protein predicted to assume a long, coiled-coil structure, is required for Rab9-dependent recycling of mannose 6-phosphate receptors (MPRs) to the Golgi and for microtubule nucleation at the Golgi via CLASP proteins. GCC185 localizes to the Golgi by cooperative interaction with Rab6 and Arl1 GTPases at adjacent sites near its C terminus. We show here by yeast two-hybrid and direct biochemical tests that GCC185 contains at least four additional binding sites for as many as 14 different Rab GTPases across its entire length. A central coiled-coil domain contains a specific Rab9 binding site, and functional assays indicate that this domain is important for MPR recycling to the Golgi complex. N-Terminal coiled-coils are also required for GCC185 function as determined by plasmid rescue after GCC185 depletion by using small interfering RNA in cultured cells. Golgi-Rab binding sites may permit GCC185 to contribute to stacking and lateral interactions of Golgi cisternae as well as help it function as a vesicle tether.  相似文献   

18.
The nature of the hepatic receptors that bind glycoproteins through fucose at the non-reducing termini of oligosaccharides in glycoproteins has been examined by three different approaches. First, the clearance from blood of intravenously injected glycoproteins was examined in mice with the aid of neoglycoproteins of bovine serum albumin (BSA). The clearance of fucosyl-BSA was rapid and was not strongly inhibited by glycoproteins that inhibit clearance mediated by the galactose or the mannose/N-acetylglucosamine receptors of liver. The clearance of Fuc alpha 1,3(Gal beta 1,4)GlcNAc-BSA (where Fuc is fucose) was inhibited weakly by either Fuc-BSA or Gal beta 1,4GlcNAc-BSA but strongly by a mixture of the two neoglycoproteins, suggesting that its clearance was mediated by hepatic galactose receptors as well as by a fucose-binding receptor. Second, the binding of neoglycoproteins to a membrane fraction of mouse liver was examined. Fuc-BSA binding to membranes was Ca2+ dependent but was not inhibited by glycoproteins that would inhibit the galactose or the mannose/N-acetylglucosamine receptors. In addition, the binding of Fuc-BSA and Gal beta 1,4GlcNAc-BSA differed as a function of pH, in accord with binding of Fuc-BSA through fucose-specific hepatic receptors. Finally, the binding of neoglycoproteins to the pure galactose lectin from rat liver was examined. Neither Fuc-BSA nor Fuc alpha 1,2Gal beta 1,4GlcNAc-BSA bound the galactose lectin, although Fuc alpha 1,3(Gal beta-1,4) GlcNAc-BSA bound avidly. Taken together, these studies suggest that a fucose-binding receptor that differs from the galactose and the mannose/N-acetylglucosamine receptors may exist in rat and mouse liver.  相似文献   

19.
In the preceding paper (Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., and Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293), we have demonstrated that certain high mannose and bisected hybrid type glycopeptides are bivalent for concanavalin A (ConA) binding. In the present study, we have investigated the interactions of ConA with a series of synthetic nonbisected and bisected complex type oligosaccharides and related glycopeptides. The modes of binding of the carbohydrates were studied by nuclear magnetic relaxation dispersion techniques, and their affinities were determined by hemagglutination inhibition measurements. We find that certain bisected complex type oligosaccharides are capable of binding and precipitating the lectin. The corresponding nonbisected analogs, however, bind but do not precipitate the protein. The stoichiometries of the precipitin reactions were investigated by quantitative precipitation analyses. The equivalence zones (regions of maximum precipitation) of the precipitin curves indicate that the bisected complex type oligosaccharides are bivalent for lectin binding. Data for the nonbisected analogs are consistent with their being univalent. The nuclear magnetic relaxation dispersion and precipitation data indicate that nonbisected and bisected complex type carbohydrates bind with different mechanisms and conformations. The former class binds by extended site interactions with the protein involving the 2 alpha-mannose residues on the alpha(1-6) and alpha(1-3) arms of the core beta-mannose residue. The latter class binds by only 1 of these 2 mannose residues, which leaves the other mannose residue free to bind to a second ConA molecule. The role of the bisecting GlcNAc residue in affecting the binding properties of complex type carbohydrates to ConA is discussed, and the results are related to the possible structure-function properties of complex type glycopeptides on the surface of cells.  相似文献   

20.
In order to test the hypothesis that cell wall glycoproteins of Candida albicans contained non-mannan oligosaccharides, the sugar composition of cell wall extracts and fractions of cell wall extracts was examined by means of fluorophore-assisted carbohydrate electrophoresis (FACE). In addition to the expected mannose, glucose, and N-acetyl-glucosamine, this analysis showed the presence of galactose, N-acetyl-galactosamine, fucose, and sialic acid and two unknown sugars. These sugars are also associated with complex oligosaccharides of mammalian glycoproteins. Presence of fucosylated cell wall components was further demonstrated by lectin-blotting analysis of cell wall extracts. Besides their structural role, complex carbohydrate structures on the surface of C. albicans may represent additional motifs through which interactions of this fungus with host cells and tissues could be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号