首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of polyanion, poly(vinylsulfate), used as a model of negatively charged surface, on ferric cytochrome c (ferricyt c) structure in acidic pH has been studied by absorbance spectroscopy, circular dichroism (CD), tryptophan (Trp) fluorescence and microcalorimetry. The polyanion induced only small changes in the native structure of the protein at neutral pH, but it profoundly shifted the acid induced high spin state of the heme in the active center of cyt c to a more neutral pH region. Cooperativity of the acidic transition of ferricyt c in the presence of the polyanion was disturbed, in comparison with uncomplexed protein, as followed from different apparent pK(a) values observed in a distinct regions of the ferricyt c electronic absorbance spectrum (4.55+/-0.08 in the 620 nm band region and 5.47+/-0.15 in the Soret region). The ferricyt c structure in the complex with the polyanion at acidic pH (below pH 5.0) has properties of a molten globule-like state. Its tertiary structure is strongly disturbed according to CD and microcalorimetry measurements; however, its secondary structure, from CD, is still native-like and ferricyt c is in a compact state as evidenced by quenched Trp fluorescence. These findings are discussed in the context of the molten globule state of proteins induced on a negatively charged membrane surface under physiological conditions.  相似文献   

2.
Sedlák E 《Biopolymers》2007,86(2):119-126
Cytochrome c (cyt c) undergoes a poly(vinylsulphate) (PVS)-induced transition at slightly acidic pH into a molten globule-like state that resembles the effect that negatively charged membrane surfaces have on this protein. In this work, the thermodynamic properties of the molten globule-like state of cyt c in complex with PVS are studied using differential scanning calorimetry, circular dichroism, fluorescence, and absorbance spectroscopy. The temperature-induced transition of the molten globule-like state of cyt c in the complex with PVS is characterized by a significantly lower calorimetric enthalpy than in the "typical" molten globule state of cyt c, i.e. free protein at pH 2.0 in high ionic strength. Moreover, the thermally-denatured state of cyt c in the complex at pH < 6 contains nearly 50% of the native secondary structure. The dependence of the transition temperature on the pH indicates a role for histidine residues in the destabilization of the cyt c structure in the PVS complex and in stabilization of the denatured state with the residual secondary structure. A comparison of the effects of small anions and polyanions demonstrates the importance of cooperativity among the anions in the destabilization of cyt c. Predictably, other hydrophilic flexible polyanions such as heparin, polyglutamate, and polyadenylate also have a destabilizing effect on the structure of cyt c. However, a correlation between the properties of the polyanions and their effect on the protein stability is still unclear.  相似文献   

3.
The effect of varying polyglutamate chain length on local and global stability of horse heart ferricytochrome c was studied using scanning calorimetry and spectroscopy methods. Spectral data indicate that polyglutamate chain lengths equal or greater than eight monomer units significantly change the apparent pK(a) for the alkaline transition of cytochrome c. The change in pK(a) is comparable to the value when cytochrome c is complexed with cytochrome bc(1). Glutamate and diglutamate do not significantly alter the temperature transition for cleavage of the Met(80)-heme iron bond of cytochrome c. At low ionic strength, polyglutamates consisting of eight or more glutamate monomers increase midpoint of the temperature transition from 57.3+/-0.2 to 66.9+/-0.2 degrees C. On the other hand, the denaturation temperature of cytochrome c decreases from 85.2+/-0.2 to 68.8+/-0.2 degrees C in the presence of polyglutamates with number of glutamate monomers n >or approximately equal 8. The rate constant for cyanide binding to the heme iron of cytochrome c of cytochrome c-polyglutamate complex also decreases by approximately 42.5% with n>or approximately equal 8. The binding constant for the binding of octaglutamate (m.w. approximately 1000) to cyt c was found to be 1.15 x 10(5) M(-1) at pH 8.0 and low ionic strength. The results indicate that the polyglutamate (n>or approximately equal 8) is able to increase the stability of the methionine sulfur-heme iron bond of cytochrome c in spite of structural differences that weaken the overall stability of the cyt c at neutral and slightly alkaline pH.  相似文献   

4.
The pH dependence of the initial reaction rate catalyzed by the isolated bovine heart ubiquinol-cytochrome c reductase (bc1 complex) varying decylbenzoquinol (DBH) and decylbenzoquinone (DB) concentrations was determined. The affinity for DBH was increased threefold by the protonation of a group with pKa = 5.7 +/- 0.2, while the inhibition constant (Ki) for DB decreased 22 and 2.8 times when groups with pKa = 5.2 +/- 0.6 and 7.7 +/- 0.2, respectively, were protonated. This suggests stabilization of the protonated form of the acidic group by DBH binding. Initial rates were best fitted to a kinetic model involving three protonatable groups. The protonation of the pKa approximately 5.7 group blocked catalysis, indicating its role in proton transfer. The kinetic model assumed that the deprotonation of two groups (pKa values of 7.5 +/- 0.03 and approximately 9.2) decreases the catalytic rate by diminishing the redox potential of the iron-sulfur (Fe-S) cluster. The protonation of the pKa approximately 7.5 group also decreased the reaction rate by 80-86%, suggesting its role as acceptor of a proton from ubiquinol. The lack of effect on the Km for DBH when the pKa 7.5-7.7 group is deprotonated suggests that hydrogen bonding to this residue is not the main factor that determines substrate binding to the Qo site. The possible relationship of the pKa 5.2-5.7 and pKa 7.5-7.7 groups with Glu272 of cytochrome b and His161 of the Fe-S protein is discussed.  相似文献   

5.
Okuno T  Hirota S  Yamauchi O 《Biochemistry》2000,39(25):7538-7545
The protein folding character of cyt c was studied with the use of a photocleavable o-nitrobenzyl derivative of Met65 (NBz-Met65). For the NBz-Met65 cyt c, the Soret absorption band slightly blue shifted compared with the unlabeled cyt c, the 695 nm absorption band related to the Met80 sulfur ligation to the heme iron disappeared, and its resonance Raman spectrum was characteristic of a six-coordinate low-spin species, all characters demonstrating coordination of a non-native ligand, probably a histidine, instead of Met80 to the heme iron. The far-UV circular dichroism (CD) spectrum of cyt c was altered, and the transition midpoint concentration value of guanidine hydrochloride (GdnHCl) for unfolding the protein decreased by 0.9 M by the modification, which showed perturbation of the structure and decrease in protein stability, respectively. With irradiation of 308 nm laser pulses on the NBz-Met65 cyt c, the Soret absorption band slightly red shifted, the 695 nm absorption band appeared, and the CD spectrum shifted toward that of the native protein, which demonstrated recovery of the methionine heme coordination and the native protein structure, due to reconversion of NBz-Met65 to unlabeled methionine. A fast phase was detected as a change in Soret absorbance with a rate constant of 21 000 +/- 4000 s(-)(1) during refolding of cyt c initiated by irradiation of a 308 nm pulse on the NBz-Met65 cyt c in the presence of 2 M GdnHCl. The observed rate constant corresponded well with that reported by the tryptophan fluorescence study [Shastry, M. C. R. S., and Roder, H. (1998) Nat. Struct. Biol. 5, 385-392]. The intermediate decayed with a rate constant of 90 +/- 15, followed by another phase with a rate constant of 13 +/- 3 s(-)(1), and was not seen in the absence of GdnHCl.  相似文献   

6.
Thermus thermophilus NADH oxidase (NOX) activity exhibits a bell-shaped pH-dependency with the maximal rate at pH 5.2 and marked inhibition at lower pH. The first pH transition, from pH 7.2 to pH 5.2, results in more than a 2-fold activity increase with protonation of a group with pKa=6.1+/-0.1. The difference in fluorescence of the free and enzyme-bound flavin strongly indicates that the increase in enzyme activity in a pH-dependent manner is related to a protein-cofactor interaction. Only one amino acid residue, His75, has an intrinsic pKa approximately 6.0 and is localized in proximity (<10 A) to N5-N10 of the isoalloxazine ring and, therefore, is able to participate in such an interaction. Solvent acidification leads to the second pH transition from pH 5.2 to 2.0 that results in complete inhibition of the enzyme with protonation of a group with an apparent pKa=4.0+/-0.1. Inactivation of NOX activity at low pH is not caused by large conformational changes in the quaternary structure as judged by intrinsic viscosity and sedimentation velocity experiments. NOX exists as a dimer even as an apoprotein at acidic conditions. There is a strong coupling between the fluorescence of the enzyme-bound flavin and the intrinsic tryptophans, as demonstrated by energy transfer between Trp47 and the isoalloxazine ring of flavin adenine dinucleotide (FAD). The pH-induced changes in intrinsic tryptophan and FAD fluorescence indicate that inhibition of the FAD-binding enzyme at low pH is related to dissociation of the flavin cofactor, due to protonation of its adenine moiety.  相似文献   

7.
Absorption UV-VIS and pre-resonance Raman spectra of acidic cyt c solutions with a series of thiols added (thiophenol, n-propanethiol, isopropanethiol, L-cysteine, dithiothreitol, 2-mercaptoethanol, N-acetyl-L-cysteine, p-acetamidothiophenol, 2-mercaptoethanamine, thioglycolic acid and mercaptopropionic acid), are presented. Interactions of cyt c molecule with the thiols were studied with the aim to identify binding of the thiols with the cyt c heme as its iron axial ligands. Absorption and Raman spectra showed some correlation between maxima of 700 nm region absorption band (typical for Fe-S axial bond in cyt c heme) and also wave numbers of spin state marker and axial ligand sensitive Raman bands on one, and pKa constant values of appropriate thiols on the other hand. These results imply thiol replacement of Met-80 from axial bond with heme iron and suggest that the force of Fe-L-cysteine axial bond is very close to the native axial bond (Fe-Met) for cyt c in neutral solution.  相似文献   

8.
G Y Liu  C A Grygon  T G Spiro 《Biochemistry》1989,28(12):5046-5050
Ultraviolet resonance Raman spectra are reported for cytochrome c (cyt c) in FeII and FeIII oxidation states at low (0.005 M) and high (0.9-1.5 M) ionic strength. With 200-nm excitation the amide band intensities are shown to remain constant, establishing that redox state and ionic strength have no influence on the alpha-helical content. The tyrosine 830/850-cm-1 doublet, however, shows a loss in 830-cm-1 intensity at I = 0.005 M for the FeIII protein, suggesting a weakening or a loss of H-bonding from an internal tyrosine, probably Tyr-48, which is H-bonded to a heme propionate group in cyt c crystals. Excitation profiles of tryptophan peak at approximately 229 nm for both FeII and FeIII forms of cyt c, but at approximately 218 nm for aqueous tryptophan. The approximately 2200-cm-1 red shift of the resonant electronic transition is attributed to the Trp-59 residue being buried and H-bonded. Consistent with this Trp environment, the H-bond-sensitive 877-cm-1 Trp band is strong and sharp, and the 1357/1341-cm-1 doublet has a large intensity ratio, approximately 1.5, for both FeII and FeIII cyt c. The 877-cm-1-band frequency shifts to 860 cm-1 when the Trp indole proton is replaced by a deuteron. This band was used to show that Trp H/D exchange in D2O is much faster for FeIII than FeII cyt c. The half-time for exchange at room temperature is estimated to be approximately 30 and approximately 5 h, respectively, for FeII and FeIII when examined at I = 0.005.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Equilibrium unfolding of barstar with guanidine hydrochloride (GdnHCl) and urea as denaturants as well as thermal unfolding have been carried out as a function of pH using fluorescence, far-UV and near-UV CD, and absorbance as probes. Both GdnHCl-induced and urea-induced denaturation studies at pH 7 show that barstar unfolds through a two-state F<->U mechanism and yields identical values for delta GU, the free energy difference between the fully folded (F) and unfolded (U) forms, of 5.0 +/- 0.5 kcal.mol-1 at 25 degrees C. Thermal denaturation of barstar also follows a two-state F<->U unfolding transition at pH 7, and the value of delta GU at 25 degrees C is similar to that obtained from chemical denaturation. The pH dependence of denaturation by GdnHCl is complex. The Cm value (midpoint of the unfolding transition) has been used as an index for stability in the pH range 2-10, because barstar does not unfold through a two-state transition on denaturation by GdnHCl at all pH values studied. Stability is maximum at pH 2-3, where barstar exists in a molten globule-like form that forms a large soluble oligomer. The stability decreases with an increase in pH to 5, the isoelectric pH of the protein. Above pH 5, the stability increases as the pH is raised to 7. Above pH 8, it again decreases as the pH is raised to 10. The decrease in stability from pH 7 to 5 in wild-type (wt) barstar, which is shown to be characterized by an apparent pKa of 6.2 +/- 0.2, is not observed in H17Q, a His 17-->Gln 17 mutant form of barstar. This decrease in stability has therefore been correlated with the protonation of His 17 in barstar. The decrease in stability beyond pH 8 in wt barstar, which is characterized by an apparent pKa of 9.2 +/- 0.2, is not detected in BSCCAA, the Cys 40 Cys 82-->Ala 40 Ala 82 double mutant form of barstar. Thus, this decrease in stability has been correlated with the deprotonation of at least one of the two cysteines present in wt barstar. The increase in stability from pH 5 to 3 is characterized by an apparent pKa of 4.6 +/- 0.2 for wt barstar and BSCCAA, which is similar to the apparent pKa that characterizes the structural transition leading to the formation of the A form. The use of Cm as an index of stability has been supported by thermal denaturation studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.  相似文献   

11.
CO complex of cyt b(5) generated at acidic pH is investigated by absorption, resonance Raman (RR), and far UV CD measurements. The Soret maximum wavelength blue-shifted to 420 nm with other absorption bands observed around 540 and 570 nm for reduced cyt b(5) upon interaction with CO at acidic pH (pH 3.1-3.5). Under this condition, the iron-carbon stretching RR band was observed at 529 cm(-1) (520 cm(-1) for C(18)O), which indicated formation of a heme&bond;CO adduct with a histidine as an axial ligand. Heme dissociated from the reduced cyt b(5) protein at pH approximately 3.5, whereas its rate decreased under CO atmosphere compared with N(2) atmosphere, due to formation of a heme&bond;CO adduct with a histidine as an axial ligand.  相似文献   

12.
An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan [Duggleby, R. G., & Kaplan, H. (1975) Biochemistry 14, 5168-5175], has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pKa value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pKa value of 7.16 +/- 0.07 as compared to the pKa value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Resonance energy transfer from pyrene-fatty acid containing phospholipid derivatives to the heme of cytochrome c (cyt c) was used to observe the binding of this protein to liposomal membranes. Liposomes were formed of egg yolk phosphatidic acid (PA) and either egg yolk phosphatidylcholine or dipalmitoylphosphatidylcholine with 1 mol % of the fluorescent lipid. Binding of cyt c to liposomes was monitored by measuring the decrease either in the fluorescence intensity or in the lifetime of pyrene emission. The requirement for the presence of the acidic phospholipid in the membrane for the binding of cyt c could be reconfirmed. Below 5 mol % of phosphatidic acid in the membrane, no significant attachment of cyt c to liquid-crystalline bilayers was evident whereas upon increasing the concentration of PA further the association of cyt c progressively increased until a saturation was reached at about 30 mol % of phosphatidic acid. Addition of NaCl caused the fluorescence intensity and lifetimes to return to values observed in the absence of cyt c, thus revealing the dissociation of the protein from the membrane. The pyrene-labeled phosphatidic acid derivatives PPHPA and PPDPA were quenched more effectively than the corresponding phosphatidylcholines, apparently due to the direct involvement of the acidic head group in binding cyt c. When dipalmitoylphosphatidylcholine (DPPC) with 5 mol % of phosphatidic acid was used, no binding of cyt c to the liposomes above the phase transition temperature of the former lipid could be demonstrated whereas below the transition temperature (Tm) binding did take place.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The redox potential of the ferrous/ferric couple in cytochrome c peroxidase has been measured as a function of pH between pH 4.5 and 8. The redox potential decreases linearly as a function of pH between pH 4.5 and 7 with a slope of --57 +/- 2 mV per pH unit. Above pH 7, there is a positive inflection in the midpoint potential versus pH plot attributed to an ionizable group in the ferrous enzyme with pKa of 7.6 +/- 0.1. The midpoint potential at pH 7 is--0.194 V relative to the standard hydrogen electrode at 25 degree C. Ferrocytochrome c peroxidase undergoes a reversible spectral transition as a function of pH. Below pH 7, the enzyme has a spectrum typical of high spin ferroheme proteins while above pH 8, the spectrum is typical of low spin ferroheme proteins. The transition is caused by a co-operative, two proton ionization with an apparent pKa of 7.7 +/- 0.2. Two other single proton ionizations cause minor perturbations to the spectrum of ferrocytochrome c peroxidase. One has a pKa of 5.7 +/- 0.2 while the second has a pKa of 9.4 +/- 0.2.  相似文献   

15.
M R Eftink 《Biochemistry》1986,25(21):6620-6624
The fluorescence of alcohol dehydrogenase is quenched by the acid dissociation of some group on the protein having an apparent pKa of 9.6 at 25 degrees C. The pKa of this alkaline quenching transition is unchanged by the binding of trifluoroethanol or pyrazole to the enzyme or by the selective removal of the active site of Zn2+ ion. This indicates that the ionization of a zinc-bound water molecule is not responsible for the quenching. The binding of NAD+ to the enzyme causes a drop in protein fluorescence and an apparent shift in the alkaline quenching transition to lower pH. In the ternary complex formed with NAD+ and trifluoroethanol the alkaline transition is difficult to discern between pH 6 and pH 11. In the NAD+-pyrazole ternary complex, however, a small but noticeable fluorescence transition is observed with a pKa(app) approximately 9.5. We propose that the alkaline transition centered at pH 9.6 is not shifted to lower pH upon binding NAD+. Instead, the amplitude of the alkaline quenching effect is decreased to the point that it is difficult to detect when NAD+ is bound. We present a model that describes the dependence of the fluorescence of the protein on pH and NAD+ concentration in terms of two independently operating, dynamic quenching mechanisms. Our data and model cast serious doubt on the identification, made previously in the literature, between the alkaline quenching pKa and the pKa of the group whose ionization is coupled to NAD+ binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The rate of mitochondrial ATPase inactivation by the naturally occurring inhibitor protein in the presence of saturating ATP and Mg2+ at pH 8.0 depends hyperbolically on the amount of inhibitor added; the upper limit of an apparent first-order constant for the inactivation process is 1.0(-1) at 25 degrees C. A dramatic difference in the inactivation rate is observed when the protein inhibitor is added to the same assay system from either acidic (pH 4.8) or alkaline (pH 8.2) solutions. The slow reversible transition of the inhibitor from its rapidly reacting 'acidic' form to the slow reacting 'alkaline' form occurs when the solution of the protein inhibitor is subjected to a pH-jump from 4.8 to 8.2 (t1/2 approximately 30s at 25 degrees C). The pH-profile of the inhibitor active/inactive equilibrium suggests that a group with pKa approximately 6.5 is involved in the transition. Treatment of the inhibitor protein with a histidine-specific reagent (e.g. diethyl pyrocarbonate) abolishes its inactivating effect on the ATPase activity. It is concluded that the protonation/deprotonation of the inhibitor protein followed by its slow conformational changes is the rate-limiting step in the inhibitor-ATP synthetase interaction.  相似文献   

17.
Direct electrochemistry of site-specific mutants of yeast iso-1-cytochrome c (cyt c) and their complexes with bovine cytochrome b5 (cyt b5) has been investigated at edge-plane pyrolytic graphite (EPG) and bis(4-pyridyl)-disulphide-modified gold electrodes. Structure/function relationships have been investigated with the particular aim of clarifying the factors controlling the interactions of proteins at electrode/electrolyte interfaces and the determinants for direct electrochemistry in ternary protein/protein/electrode adducts, e.g. cyt c/cyt b5/EPG. Investigations of the cyt c mutants alone revealed a variety of electrochemical responses: all the mutants show similar voltammetric reversibility at modified gold electrodes, whereas at EPG electrodes the reversibility follows the order: Asn52Ile-Cys102Thr greater than Cys102Thr greater than Asn52Ala-Cys102Thr. Mid-point potentials follow the order: Arg13Ile (+60 +/- 5 mV vs. standard calomel electrode) greater than Cys102Thr (+40 +/- 5 mV) greater than Lys27Gln (+30 +/- 5 mV) approximately Lys72Asp (+30 +/- 5 mV) greater than Asn52Ala-Cys102Thr (+15 +/- 5 mV) greater than Asn52Ile-Cys102Thr (-10 +/- 5 mV). The structural basis for these differences is briefly discussed. When these mutants are bound to cyt b5, the differences in electrochemical response are greatly enhanced in the ternary cyt c/cyt b5/EPG adducts. A minimal analysis of these differences supports a model of multiple overlapping binding and recognition domains on cyt c which may be finely tuned to allow ternary complex formation so that a single-site variation could modify or abolish direct electrochemistry in the ternary adduct.  相似文献   

18.
The apparent equilibrium constant (Kapp) of the alkaline transition (AT) of beef heart cytochrome c, obtained from pH titrations of the current intensities in cyclic voltammetry experiments, has been measured as a function of the temperature from 5 to 65 degrees C, at different ionic strength (I = 0.01-0.2 M). The temperature profile of the pKapp values is biphasic and yields two distinct sets of DeltaH degrees 'AT and DeltaS degrees 'AT values below and above approximately 40 degrees C. In the low-temperature range, the process is endothermic and is accompanied by a small positive entropy change, while at higher temperatures it becomes less endothermic and involves a pronounced entropy loss. The temperature dependence of the transition thermodynamics is most likely the result of the thermal transition of native ferricytochrome c from a low-T to an high-T conformer which occurs at alkaline pH values at a temperature comparable with above (Ikeshoji, T., Taniguchi, I., and Hawkridge, F. M. (1989) J. Electroanal. Chem. 270, 297-308; Battistuzzi, G., Borsari, M., Sola, M., and Francia, F. (1997) Biochemistry 36, 16247-16258). Thus, it is apparent that the transitions of the two native conformers to the corresponding alkaline form(s) are thermodynamically distinct processes. It is suggested that this difference arises from either peculiar transition-induced changes in the hydration sphere of the protein or to the preferential binding of different lysines to the heme iron in the two temperature ranges. Extrapolation of the Kapp values at null ionic strength allowed the determination of the thermodynamic equilibrium constants (Ka) at each temperature, hence of the "true" standard thermodynamic parameters of the transition. The pKa value at 25 degrees C was found to be 8.0. A pKapp value of 14.4 was calculated for the alkaline transition of ferrocytochrome c at 25 degrees C and I = 0.1 M. The much greater relative stabilization of the native state in the reduced as compared to the oxidized form turns out to be almost entirely enthalpic in origin, and is most likely due to the greater affinity of the methionine sulfur for the Fe(II) ion. Finally, it is found that the Debye-Hückel theory fits the ionic strength dependence of the pKapp values, at least qualitatively, as observed previously for the ionic strength dependence of the reduction potential of this protein class. It is apparent that the increase in the pKapp values with increasing ionic strength is for the most part an entropic effect.  相似文献   

19.
Activation of peroxidase catalytic function of cytochrome c (cyt c) by anionic lipids is associated with destabilization of its tertiary structure. We studied effects of several anionic phospholipids on the protein structure by monitoring (1) Trp59 fluorescence, (2) Fe-S(Met80) absorbance at 695 nm, and (3) EPR of heme nitrosylation. Peroxidase activity was probed using several substrates and protein-derived radicals. Peroxidase activation of cyt c did not require complete protein unfolding or breakage of the Fe-S(Met80) bond. The activation energy of cyt c peroxidase changed in parallel with stability energies of structural regions of the protein probed spectroscopically. Cardiolipin (CL) and phosphatidic acid (PA) were most effective in inducing cyt c peroxidase activity. Phosphatidylserine (PS) and phosphatidylinositol bisphosphate (PIP2) displayed a significant but much weaker capacity to destabilize the protein and induce peroxidase activity. Phosphatidylinositol trisphosphate (PIP3) appeared to be a stronger inducer of cyt c structural changes than PIP2, indicating a role for the negatively charged extra phosphate group. Comparison of cyt c-deficient HeLa cells and mouse embryonic cells with those expressing a full complement of cyt c demonstrated the involvement of cyt c peroxidase activity in selective catalysis of peroxidation of CL, PS, and PI, which corresponded to the potency of these lipids in inducing cyt c's structural destabilization.  相似文献   

20.
M S Brody  R Hille 《Biochemistry》1999,38(20):6668-6677
A comprehensive kinetic study of sulfite oxidase has been undertaken over the pH range 6.0-10.0, including conventional steady-state work as well as rapid kinetic studies of both the reaction of oxidized enzyme with sulfite and reduced enzyme with cytochrome c (III). A comparison of the pH dependence of kcat, kred, and kox indicates that kred is principally rate limiting above pH 7, but that below this pH the pH dependence of kcat is influenced by that of kox. The pH independence of kred is consistent with our previous proposal concerning the reaction mechanism, in which attack of the substrate lone pair of electrons on a Mo(VI)O2 unit initiates the catalytic sequence. The pH dependence of kred/Kdsulfite indicates that a group on the enzyme having a pKa of approximately 9.3 must be deprotonated for effective reaction of oxidized enzyme with sulfite, possibly Tyr 322, which from the crystal structure of the enzyme constitutes part of the substrate binding site. There is no evidence for the HSO3-/SO32- pKa of approximately 7 in the pH profile for kred/Kdsulfite, suggesting that enzyme is able to oxidize the two equally well. By contrast, kcat/Kmsulfite and kred/Kdsulfite exhibit distinct pH dependence (the former is bell-shaped, the latter sigmoidal), again consistent with the oxidative half-reaction contributing to the kinetic barrier to catalysis at low pH. The pH dependence of kcat/Km(cyt c) (reflecting the second-order rate of reaction of free enzyme with free cytochrome) is bell-shaped and closely resembles that of kox/Kd(cyt c), reflecting the importance of the oxidative half-reaction in the low substrate concentration regime. The pH profile for kox/Kd(cyt c) indicates that two groups with a pKa of approximately 8 are involved in the reaction of free reduced enzyme with cytochrome c, one of which must be deprotonated and the other protonated. These results are consistent with the known electrostatic nature of the interaction of cytochrome c with its physiological partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号