首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

2.
This study characterized endometrial expression of mRNAs of oestrogen and progesterone receptors (ER, PR) and insulin-like growth factor-I (IGF-I) during the oestrous cycle. Seven Holstein heifers that showed standing oestrus on the same day (day 0) were selected and blood samples for oestradiol (E2) and progesterone (P4) determinations by RIA were taken daily until day 23. Endometrial samples were taken by transcervical biopsies on days 0, 5, 12 and 19 for mRNA determination by solution hybridization. The highest endometrial mRNA levels of ERalpha and PR were observed at oestrus and a decline was observed already at day 5, which then decreased progressively at the end of the luteal phase. IGF-I mRNA levels were higher at day 0 and 5 than at day 12. At day 19, mRNA levels of ERalpha, PR and IGF-I were the lowest in heifers that were at the end of their luteal phase (n=4), but were high again in heifers which P4 levels were basal (n=3). The temporal changes in mRNA endometrial expression of ERalpha, PR and IGF-I and their relation to the changes in steroid concentrations during the bovine oestrus cycle are described.  相似文献   

3.
4.
5.
6.
To investigate the potential role(s) of the insulin-like growth factors (IGFs) in embryogenesis, we have used in situ hybridization histochemistry to localize mRNAs for IGF-I, IGF-II, and the type I IGF receptor during an early period in rat embryonic development (embryonic days 14 and 15). IGF-I and IGF-II mRNAs were found in distinctly different patterns of cellular distribution. IGF-I mRNA was particularly abundant in undifferentiated mesenchymal tissue in the vicinity of sprouting nerves and spinal ganglia, and in circumscribed regions of the developing face that corresponded to the target zones of the trigeminal nerve. IGF-I mRNA was also found in aggregations of mesenchyme surrounding, but not in developing muscle and cartilage. IGF-I mRNA was selectively concentrated in areas of active tissue remodeling, such as the cardiac outflow tract, and was undetectable in liver, pituitary, and nervous system at this early stage of organogenesis. IGF-II mRNA was abundant in developing muscle, cartilage, and vascular tissue, and in the embryonic liver and pituitary. IGF-II mRNA was also conspicuous in areas of vascular interface with the brain, such as the choroid plexus and the organum vasculosum of the lamina terminalis. Messenger RNA for the type I IGF receptor was widely distributed in embryonic tissues, but the highest level were seen in the ventral floorplate of the hindbrain, where specialized neuroepithelial cells act as guides for axonal targeting. In conclusion, the different cellular patterns of expression of genes for IGF-I and IGF-II indicate that these two IGFs are differently regulated and, thus, may have significantly different roles in the process of embryonic development. Furthermore, the early and widespread expression of the type-I IGF receptor gene, in contrast to the relatively limited and localized pattern of IGF-I gene expression, is consistent with the view that this receptor may mediate the effects of IGF-II as well as IGF-I during embryogenesis.  相似文献   

7.
Estrogen induces insulin-like growth factor-I expression in the rat uterus   总被引:14,自引:0,他引:14  
The inability to convincingly demonstrate a mitogenic effect of estrogen on isolated uterine cells in culture suggests that autocrine or paracrine growth factors may be important in the estrogen-induced uterine proliferative response. Here we report that uterine expression of insulin-like growth factor-I (IGF-I), an important mediator of GH action, is increased after 17 beta-estradiol (5 micrograms/100 g bw, ip) administration to ovariectomized prepubertal rats. An increase in uterine IGF-I mRNA abundance, approximately 14-fold above untreated controls, was apparent 6 h after estrogen administration and the level achieved exceeded that seen in the uterus from intact mature rats during diestrus. In contrast to the increase in IGF-I expression in the uterus, no significant change in serum IGF-I concentration or hepatic or renal IGF-I mRNA abundance was demonstrable after 17 beta-estradiol injection of ovariectomized prepubertal rats. The increase in uterine IGF-I expression, was similar in both pituitary-intact and hypophysectomized, ovariectomized rats. We believe this is the first report of induction of IGF-I expression by estrogen in vivo. As such, the finding expands the role and significance of IGF-I as a mediator of growth beyond that related to GH.  相似文献   

8.
9.
To study the effects of insulin and insulin-like growth factor-I (IGF-I) on the development of bovine embryos, fertilized bovine embryos in vitro were cultured in a chemically defined, protein-free medium: modified synthetic oviduct fluid (mSOF) supplemented with 1 mg/ml polyvinyl alcohol. Dose-response studies showed that insulin (0.5 to 10 microg/ml) and IGF-I (2 to 200 ng/ml) stimulated the development of bovine embryos to the morula stage 5 d after in vitro fertilization. The addition of 0.5 microg/ml insulin or 2 ng/ml IGF-I to the mSOF had beneficial effects on embryonic development to the morula stage in the presence of amino acids, but insulin and IGF-I did not affect the development of bovine embryos to the morula stage in the absence of amino acids. The antiIGF-I receptor antibody (alphaIR-3) completely blocked the stimulation of development to the morula stage by insulin and IGF-I. These findings suggest that the stimulation of embryonic development by insulin and IGF-I is mediated through the IGF-I receptor.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse IGF-IA and IGF-IB mRNAs using SYBR Green real-time RT-PCR. In the liver, IGF-I mRNA expression increased from 10 days of age to 45 days. In the uterus and ovary, IGF-I mRNA expression increased from 21 days of age, and then decreased at 45 days. In the kidney, IGF-I mRNA expression decreased from 10 days of age. IGF-IA mRNA levels were higher than IGF-IB mRNA levels in all organs examined. Estradiol-17beta (E2) treatment in ovariectomized mice increased uterine IGF-IA and IGF-IB mRNA levels from 3 hr after injection, and highest levels for both mRNAs were detected at 6 hr, and relative increase was greater for IGF-IB mRNA than for IGF-IA mRNA. These results suggest that expression of IGF-I mRNA variants is regulated in organ-specific and age-dependent manners, and estrogen is involved in the change of IGF-I mRNA variant expression.  相似文献   

11.
The transition from adolescence to adulthood is accompanied by substantial plastic modifications in the cerebral cortex, including changes in the growth and retraction of neuronal processes and in the rate of synaptic formation and neuronal loss. Some of these plastic changes are prevented in female rats by prepubertal ovariectomy. The ovarian hormone estradiol modulates neuronal differentiation and survival and these effects are in part mediated by the interaction with insulin-like growth factor-I (IGF-I). In this study, we have explored whether the activation by estradiol of some components of IGF-I receptor signaling is altered in the prefrontal cortex during puberty. Estradiol administration to rats ovariectomized after puberty resulted, 24 h after the hormonal administration, in a sustained phosphorylation of Akt and glycogen synthase kinase 3 beta in the prefrontal cortex. However, this hormonal effect was not observed in animals ovariectomized before puberty. These findings suggest that during pubertal maturation there is a programming by ovarian hormones of the future regulatory actions of estradiol on IGF-I receptor signaling in the prefrontal cortex. The modification in the regulation of IGF-I receptor signaling by estradiol during pubertal maturation may have implications for the developmental changes occurring in the prefrontal cortex in the transition from adolescence to adulthood.  相似文献   

12.
The insulin-like growth factor I (IGF-I) gene was characterized in channel catfish. Partial cDNA sequence, missing exon 1 and part of exon 2, was obtained in 5'- and 3'-RACE experiments. Direct sequencing of two bacterial artificial chromosome clones revealed gene structure and provided sequence from 640 bp upstream of the initiator methionine to 136 bp beyond the polyadenylation site. Genomic sequence contained a putative TATA box 506 bp upstream of the initiator methionine. The 477-bp reading frame within five exons encoded a 159-amino acid (aa) pre-propeptide highly similar to IGF-I in higher vertebrates. The sequence encoding the signal peptide was unique in catfish and contained 70% G+C content with the potential for a stable stem-loop structure. Full-length cDNA was only maintained in recombination-deficient (DH10B) strain E. coli. Levels of IGF-I mRNA were highest in liver, followed by brain and muscle, then heart and kidney (P<0.05). A CT/GA dinucleotide microsatellite in intron 1 was highly polymorphic in commercial channel catfish, and permitted placement of the IGF-I gene on the catfish genetic map. However, specific IGF-I alleles were not correlated with differences in growth rate from 100 to 130 days post-hatch in USDA103 line catfish.  相似文献   

13.
The objective of this study was to determine whether uterine stromal and/or epithelial progesterone receptor (PR) is required for the antagonism by progesterone (P(4)) of estradiol-17beta (E(2)) action on expression of PR and lactoferrin in uterine epithelium. Uterine tissue recombinants were prepared with epithelium (E) and stroma (S) from wild-type (wt) and PR knockout (PRKO) mice: wt-S+wt-E and PRKO-S+wt-E. P(4) action on epithelial PR expression was studied in wt-S+wt-E and PRKO-S+wt-E tissue recombinants. E(2) down-regulated epithelial PR in both types of tissue recombinants, but P(4) blocked E(2)-induced down-regulation of epithelial PR only in wt-S+wt-E tissue recombinants. Thus, P(4) requires stromal PR to inhibit E(2)-induced down-regulation of epithelial PR. Epithelial PR is not sufficient in itself. The inhibitory effect of P(4) on lactoferrin expression was studied in 4 types of tissue recombinants (wt-S+wt-E, PRKO-S+wt-E, wt-S+PRKO-E, and PRKO-S+PRKO-E). E(2) induced lactoferrin in all 4 types of tissue recombinants. P(4) blocked E(2)-induced lactoferrin expression only in wt-S+wt-E tissue recombinants. In wt-S+PRKO-E tissue recombinants, P(4) inhibited lactoferrin expression only partially. P(4) failed to block E(2)-induced lactoferrin expression in PRKO-S+wt-E and PRKO-S+PRKO-E tissue recombinants. Thus, both epithelial and stromal PR are essential for full P(4) inhibition of E(2)-induced lactoferrin expression.  相似文献   

14.
Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, has been shown to be essential for fertilization and implantation. The aim of this study was to determine the expression and hormonal regulation of basigin gene in mouse uterus during the peri-implantation period. Basigin immunostaining and mRNA were strongly localized in luminal and glandular epithelium on day 1 of pregnancy and gradually decreased to a basal level from day 2-4 of pregnancy. Basigin mRNA expression in the sub-luminal stroma was first detected on day 3 of pregnancy and increased on day 4 of pregnancy. On day 5 of pregnancy, the expression of basigin protein and mRNA was only detected in the implanting embryos, and the luminal epithelium and sub-luminal stroma surrounding the embryos. A similar expression pattern of basigin was also induced in the delayed-implantation uterus which was activated by estrogen injection. On day 6-8 of pregnancy, although a basal level of basigin protein was detected in the secondary decidual zone, basigin mRNA expression was strongly seen in this location. Basigin mRNA was also highly expressed in the decidualized cells under artificial decidualization. Estrogen significantly stimulated basigin expression in the ovariectomized mouse uterus. A high level of basigin immunostaining and mRNA was also seen in proestrus and estrus uteri. These results suggest that basigin expression is closely related to mouse implantation and up-regulated by estrogen.  相似文献   

15.
16.
17.
Relationship between insulin-like growth factor-I receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2 inhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2. These data suggest that IGF-I may be involved in regulating CL function, and maintaining CL structure through changes in expression of its receptors. Inhibited expression of IGF-IR by PGF2 may be part of mechanisms for regression of CL.  相似文献   

18.
Relationship between insulin-like growth factor-l receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2ainhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2α. These data suggest that IGF-I may be involved in regulating CL function, and maintai  相似文献   

19.
Insulin-like growth factor-I (IGF-I), synthesized by the uterine endometrium of cyclic and early pregnant gilts, accumulates in the uterine luminal fluid, where it comes in contact with the developing conceptus and the rapidly growing uterus. The uterus and the conceptus thus represent potential target sites for the biological effects of IGF-I, provided high-affinity Type I receptors are present. This study was undertaken to evaluate the expression of functional IGF-I receptors in the endometrium and myometrium of pregnant (Day 10, 12, and 15) gilts and in the endometrium of cyclic (Day 15) and pseudopregnant (Day 15) gilts and to correlate levels of these receptors with temporally regulated uterine production of IGF-I. Specific binding of 125I-IGF-I to endometrial membranes pretreated with MgCl2 (4 M) at 4 degrees C for 16 h, was saturable and membrane concentration-dependent. Competition of 125I-IGF-I binding to endometrial membranes was highest with unlabeled IGF-I greater than IGF-II much greater than insulin, whereas porcine relaxin was noncompetitive. Affinity cross-linking of endometrial membranes with 125I-IGF-I followed by SDS-PAGE and autoradiography revealed two labeled bands of Mr greater than 200,000 and Mr 135,000, with the major band being the Mr 135,000 species. Scatchard analysis of 125I-IGF-I binding to endometrial membranes from Day 12 pregnant gilts revealed a single class of binding sites with a dissociation constant (Kd) = 4.08 +/- 0.09 nM. Membranes prepared from endometrium of Day 10, 12, and 15 pregnant gilts exhibited comparable 125I-IGF-I binding (p greater than 0.05) that was higher (p less than 0.001) than that for the corresponding myometrial membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Calpha (PKCalpha), degradation of inhibitor-kappaB (I-kappaB) and nuclear migration of nuclear factor-kappaB (NF-kappaB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the alpha-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCalpha by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 muM), an inhibitor of eIF2alpha dephosphorylation, as was activation of PKCalpha. In addition myotubes transfected with a dominant-negative PKR (PKRDelta6) showed no release of arachidonate in response to Ang II, and no activation of PKCalpha. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA(2)/PKC pathway leading to activation of NF-kappaB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号