首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid generating enzyme in the early embryo. Here we report the immunolocalization of this enzyme (RALDH-2-IR) in stage 6-29 chicken embryos; we also show that tissues that exhibit strong RALDH-2-IR in the embryo contain RALDH-2 and synthesize retinoic acid. RALDH-2-IR indicates dynamic and discrete patterns of retinoic acid synthesis in the embryo, particularly within the somitic mesoderm, lateral mesoderm, kidney, heart, and spinal motor neurons. Prior to somitogenesis, RALDH-2-IR is present in the paraxial mesoderm with a rostral boundary at the level of the presumptive first somite; as the somites form, they exhibit strong RALDH-2-IR. Cervical presomitic mesoderm exhibits RALDH-2-IR but thoracic presomitic mesoderm does not. Neural crest cells do not express detectable levels of RALDH-2, but migrating crest cells are associated with RALDH-2 expressing mesoderm. The developing limb mesoderm expresses little RALDH-2-IR; however, RALDH-2-IR is strongly expressed in tissues adjacent to the limb. The most lateral, earliest-projecting motor neurons at all levels of the spinal cord exhibit RALDH-2-IR. Subsequently, many additional motor neurons in the brachial and lumbar cord regions express RALDH-2-IR. Motor neuronal expression of RALDH-2-IR is present in the growing axons as they extend to the periphery, indicating a potential role of retinoic acid in nerve influences on peripheral differentiation. With the exception of a transient expression in the facial/vestibulocochlear nucleus, cranial motor neurons do not express detectable levels of RALDH-2-IR.  相似文献   

2.
Multiple studies indicate that quantitative control of the levels of all-trans-retinoic acid (RA) in the vertebrate embryo is necessary for correct development. The function of RA in cells is regulated by a number of coordinated mechanisms. One of those mechanisms involves controls on the rate of RA catabolism. Recently, enzymes capable of catabolizing RA were found to constitute a new family, called CYP26, within the cytochrome P450 superfamily. CYP26 homologues have been isolated from human, mouse, zebra fish, and recently from the chick. In this study, we examined the regulation of chicken CYP26 (cCYP26) expression by RA during the early phase of chick limb outgrowth. In the anterior limb mesenchyme and apical ectodermal ridge (AER), cCYP26 expression was induced in a concentration dependent manner by implanting beads soaked in 0.1, 1, and 5 mg/ml RA. The RA-induced expression of cCYP26 in anterior limb mesenchyme and the AER was detected as early as 1 hr after treatment and was not affected by the presence of cycloheximide. In contrast to the anterior limb, the induction of cCYP26 was dramatically reduced (or absent) when RA beads were implanted in the posterior limb mesenchyme. Furthermore, induction of cCYP26 expression in the anterior mesenchyme was inhibited by transplantations of the zone of polarizing activity (ZPA) and by Shh-soaked beads. Our data suggest that different mechanisms regulate retinoid homeostasis in the AER and mesenchyme during limb bud outgrowth. J. Exp. Zool. 290:136-147, 2001.  相似文献   

3.
An autoradiographic analysis was undertaken to examine the localization of retinoids applied exogenously to chick limb buds. Ion-exchange beads (AGI-X2) containing a tritium-labeled synthetic retinoid, Am80, were implanted to various regions of chick wing buds. This synthetic retinoid is known to induce a duplicated limb pattern as retinoic acid (RA) does. One to 24 hours after the application, wing buds were fixed, sectioned, and prepared for autoradiography. Heavy labeling was observed in the peripheral region of the wing mesoderm, but no gradient along the antero-posterior axis was found.
These results suggest that the peripheral region of the limb bud may be important for the morphogenetic function of RA. Tissue-bound retinoids may not form an antero-posterior concentration gradient when retinoids are added to the anterior margin of the chick limb bud.  相似文献   

4.
A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. Cells expressing Wnt-2b are able to induce Fgf-10 and generate an extra limb when implanted into the flank. In the presumptive hindlimb region, another Wnt gene, Wnt-8c, controls Fgf-10 expression, and is also capable of inducing ectopic limb formation in the flank. Finally, we also show that the induction of Fgf-8 in the limb ectoderm by FGF-10 is mediated by the induction of Wnt-3a. Thus, three WNT signals mediated by beta-catenin control both limb initiation and AER induction in the vertebrate embryo.  相似文献   

5.
Besides nuclear retinoid receptors and cellular retinoid binding proteins also retinoic acid (RA)-synthesizing enzymes (using all-trans-retinal as substrate) and RA-catabolizing enzymes (producing hydroxylated products) may explain the specific effects of retinoids. In the past we have established an active role for 4-hydroxy-RA and 4-oxo-RA, which originally were considered to be inactive retinoids, but in fact are highly active modulators of positional specification in Xenopus development. Here we present evidence for a specific role of hydroxylated RA metabolites in the onset of neuronal differentiation. 4-Hydroxy- and 18-hydroxy-RA are products of the hydroxylation of RA by a novel cytochrome P450 (CYP)-type of enzyme, CYP26, expression of which is rapidly induced by RA. P19 embryonal carcinoma (EC) cell lines stably expressing hCYP26 undergo extensive and rapid neuronal differentiation in monolayer at already low concentrations of RA, while normally P19 cells under these conditions differentiate only in endoderm-like cells. Our results indicate that the effects on growth inhibition and RARbeta transactivation of P19 EC cells are mediated directly by RA, while the onset of neuronal differentiation and the subsequent expression of neuronal markers is mediated by hCYP26 via the conversion of RA to its hydroxylated products.  相似文献   

6.
All-trans retinoic acid (RA) levels are controlled by enzymes of the vitamin A metabolism (RDH16, RalDH2, and LRAT) and RA catabolism (CYP26 and CYP2S1). Here, the mRNA expression of these enzymes was investigated in human keratinocytes at different Ca2+concentrations and after exposure to RA and CYP26 inhibitors. Cellular differentiation (high Ca2+) increased the expression of LRAT, RDH16 and RalDH2, and decreased CYP26B1. RA (1 μM) induced CYP26A1, CYP26B1, CYP2S1, CRABPII and LRAT mRNA. The CYP26 inhibitor talarozole altered CYP26A1 and LRAT mRNA expression in a similar way as RA, increased the cellular accumulation of [3H]RA, and induced a punctate CRABPII staining, also observed after siRNA knock-down of CYP26B1 (but not after RA exposure). Furthermore, CYP26B1 siRNA increased the accumulation of [3H]RA and the CRABPII mRNA, suggesting an augmented retinoid signalling. Thus CYP26B1 appears essential for RA catabolism under physiological conditions, whereas CYP26A1 might play a greater role during RA excess.  相似文献   

7.
Spatially regulated synthesis and degradation of retinoic acid (RA) organize embryonic pattern formation in vertebrate embryos. Here, we show expression pattern of genes encoding Ciona intestinalis homologs of the retinaldehyde dehydrogenase, RALDH2, and the cytochrome P450 RA-degrading enzyme, CYP26, in normal and RA-treated embryos. The Ciona homolog of Raldh2, Ci-Raldh2, was expressed in a few muscle-lineage blastomeres in the middle gastrula. Strong expression was then restricted to the anterior-most three muscle cells on each side of the tailbud embryo. The Ciona homolog of Cyp26, Ci-Cyp26, was expressed in the presumptive brain cells in the middle gastrula. The expression was then upregulated in the neck region. The posterior end of the tail was also weakly stained. Non-overlapping expression domains of Ci-Raldh2 and Ci-Cyp26 look similar to those in vertebrates, although the expression of both genes was restricted to a small number of cells in Ciona embryos. RA upregulated Ci-Cyp26 expression and slightly downregulated Ci-Raldh2 expression in the tailbud embryo. We also show expression pattern of a Hox-1 ortholog (CiHox-1) in the Ciona embryo. CiHox-1 was expressed in two separated regions of the nerve cord and neck epidermis at the neurula stage. Expression pattern of these three genes are essentially similar to that in vertebrates.  相似文献   

8.
Differentiation onset in the vertebrate body axis is controlled by a conserved switch from fibroblast growth factor (FGF) to retinoid signalling, which is also apparent in the extending limb and aberrant in many cancer cell lines. FGF protects tail-end stem zone cells from precocious differentiation by inhibiting retinoid synthesis, whereas later-produced retinoic acid (RA) attenuates FGF signalling and drives differentiation. The timing of RA production is therefore crucial for the preservation of stem zone cells and the continued extension of the body axis. Here we show that canonical Wnt signalling mediates the transition from FGF to retinoid signalling in the newly generated chick body axis. FGF promotes Wnt8c expression, which persists in the neuroepithelium as FGF signalling declines. Wnt signals then act here to repress neuronal differentiation. Furthermore, although FGF inhibition of neuronal differentiation involves repression of the RA-responsive gene, retinoic acid receptor beta (RARbeta), Wnt signals are weaker repressors of neuron production and do not interfere with RA signal transduction. Strikingly, as FGF signals decline in the extending axis, Wnt signals now elicit RA synthesis in neighbouring presomitic mesoderm. This study identifies a directional signalling relay that leads from FGF to retinoid signalling and demonstrates that Wnt signals serve, as cells leave the stem zone, to permit and promote RA activity, providing a mechanism to control the timing of the FGF-RA differentiation switch.  相似文献   

9.
Distal and proximal mesoderm of chick limb bud was respectively dissociated and cultured in the medium containing various concentrations of retinoic acid (RA). At low concentrations (5-50 ng/ml), RA promoted proliferation and chondrogenesis in the distal mesodermal cells. The distal cells of stage 20-24 limb buds were responsive to RA, although those of stages 25-27 were unresponsive. Both the cells of anterior and posterior regions of the distal mesoderm were responsive to RA, while the cells of proximal mesoderm were unresponsive. At higher concentrations, the growth-promoting effect of RA was reduced and chondrogenesis in the distal cells was rather inhibited. These results were discussed in relation to the role of RA as the morphogen in normal limb development and experimental duplicate formation.  相似文献   

10.
In the developing retina, a retinoic acid (RA) gradient along the dorso-ventral axis is believed to be a prerequisite for the establishment of dorso-ventral asymmetry. This RA gradient is thought to result from the asymmetrical distribution of RA-generating aldehyde dehydrogenases along the dorso-ventral axis. Here, we identified a novel aldehyde dehydrogenase specifically expressed in the chick ventral retina, using restriction landmark cDNA scanning (RLCS). Since this molecule showed enzymatic activity to produce RA from retinaldehyde, we designated it retinaldehyde dehydrogenase 3 (RALDH-3). Structural similarity suggested that RALDH-3 is the orthologue of human aldehyde dehydrogenase 6. We also isolated RALDH-1 which is expressed in the chick dorsal retina and implicated in RA formation. Raldh-3 was preferentially expressed first in the surface ectoderm overlying the ventral portion of the prospective eye region and then in the ventral retina, earlier than Raldh-1 in chick and mouse embryos. High level expression of Raldh-3 was also observed in the nasal region. In addition, we found that Pax6 mutants are devoid of Raldh-3 expression. These results suggested that Raldh-3 is the key enzyme in the formation of an RA gradient along the dorso-ventral axis during the early eye development, and also in the development of the olfactory system.  相似文献   

11.
Retinoic acid (RA), through nuclear retinoid receptors, regulates the expression of numerous genes. However, little is known of the biochemical mechanisms that regulate RA concentration in vivo. CYP26 (P450RAI), a novel cytochrome P450, is expressed during embryonic development, induced by all-trans RA, and capable of catalyzing the oxidation of [3H]RA to polar retinoids including 4-oxo-RA. Here we report that CYP26 expression in adult liver is regulated by all-trans RA and dietary vitamin A, and is correlated with the metabolism of all-trans RA to polar metabolites. In normal mouse and rat liver, CYP26 mRNA was barely detectable; however, after acute treatment with all-trans RA CYP26 mRNA and RA metabolism by liver microsomes were significantly induced. Aqueous-soluble RA metabolites were detected, but their formation was not induced. The expression of retinoid receptors, RAR-gamma and RXR-alpha, was not changed after RA treatment in vivo. In a model of chronic vitamin A ingestion during aging, CYP26 mRNA expression, determined by Northern blot and RT-PCR analysis, increased progressively with dietary vitamin A (P<0.0001; marginal < control < supplemented) and age (P<0.003). The relative expression of CYP26 mRNA was positively correlated with liver total retinol (log10), ranging from undetectable CYP26 expression at liver retinol concentrations below approximately 20 nmol/g to a three- to fourfold elevation at concentrations >10,000 nmol/g (r=0.90, P<0.0001). We conclude that CYP26 expression and RA metabolism are regulated in adult liver not only acutely by RA administration, as may be relevant to retinoid therapy, but under chronic dietary conditions relevant to vitamin A nutrition in humans.  相似文献   

12.
Exogenous retinoic acid (RA) induces marked effects on limb patterning, but the precise role of endogenous RA in this process has remained unknown. We have studied the role of RA in mouse limb development by focusing on CYP26B1, a cytochrome P450 enzyme that inactivates RA. Cyp26b1 was shown to be expressed in the distal region of the developing limb bud, and mice that lack CYP26B1 exhibited severe limb malformation (meromelia). The lack of CYP26B1 resulted in spreading of the RA signal toward the distal end of the developing limb and induced proximodistal patterning defects characterized by expansion of proximal identity and restriction of distal identity. CYP26B1 deficiency also induced pronounced apoptosis in the developing limb and delayed chondrocyte maturation. Wild-type embryos exposed to excess RA phenocopied the limb defects of Cyp26b1(-/-) mice. These observations suggest that RA acts as a morphogen to determine proximodistal identity, and that CYP26B1 prevents apoptosis and promotes chondrocyte maturation, in the developing limb.  相似文献   

13.
14.
Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.  相似文献   

15.
We have cloned a fragment of Cyp26B1, a novel retinoic acid (RA) catabolising enzyme, and examined its expression pattern during early stages of chick embryogenesis. It is expressed from stage 7 in the tail bud, an anterior patch of mesenchyme, the heart, the endothelium of the vasculature, the eye, the limb bud, the hindgut and in a complex pattern in the rhombomeres of the hindbrain. As such it has a non-overlapping expression with chick Cyp26A1, the other RA catabolising enzyme, but shows a combination of features of mouse Cyp26A1 and Cyp26B1. We have also examined its expression in the quail embryo and in the RA-free quail embryo. In the absence of RA, Cyp26B1 is only expressed in the hindbrain and fails to be expressed in all the other regions of the embryo, most dramatically in the trunk. Adding back RA rescues Cyp26B1 expression.  相似文献   

16.
17.
18.
Summary Heteroclass chick/mouse chimaeras were prepared by transplanting somitic presumptive myogenic cells or limb bud myoblasts from donor mouse embryos into chick hosts, to replace (1) previously extirpated brachial somitic mesoderm or (2) experimentally deleted limb premuscular masses. Since mouse and chick cells can be distinguished by differential staining affinities, this parameter was used to verify the viability of the implant and to assess its fate. Our analyses showed that transplanted mouse somitic myogenic stem cells or limb bud myoblasts did not participate in the host brachial musculature, whatever the experimental conditions.  相似文献   

19.
During early stages of normal chick limb development, the homeobox-containing (HOX) gene GHox-4.6 is expressed throughout the posterior mesoderm of the wing bud from which most of the skeletal elements including the digits will develop, whereas GHox-8 is expressed in the anterior limb bud mesoderm which will not give rise to skeletal elements. In the present study, we have examined the expression of GHox-4.6 and GHox-8 in the wing buds of two polydactylous mutant chick embryos, diplopodia-5 and talpid2, from which supernumerary digits develop from anterior limb mesoderm, and have also examined the expression of these genes in response to polarizing zone grafts and retinoic acid-coated bead implants which induce the formation of supernumerary digits from anterior limb mesoderm. We have found that the formation of supernumerary digits from the anterior mesoderm in mutant and experimentally induced polydactylous limb buds is preceded by the ectopic expression of GHox-4.6 in the anterior mesoderm and the coincident suppression of GHox-8 expression in the anterior mesoderm. These observations suggest that the anterior mesoderm of the polydactylous limb buds is "posteriorized" and support the suggestion that GHox-8 and GHox-4.6, respectively, are involved in specifying the anterior non-skeletal and posterior digit-forming regions of the limb bud. Although the anterior mesodermal domain of GHox-8 expression is severely impaired in the mutant and experimentally induced polydactylous limb buds, this gene is expressed by the prolonged, thickened apical ectodermal ridges of the polydactylous limb buds that extend along the distal anterior as well as the distal posterior mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号