首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
小鼠基因组研究进展李善如1,2王冬平1陈永福2(1.军事医学科学院实验动物中心,北京100071)(2.中国农业大学生物学院,北京100094)TheDevelopmentofMouseGenomeResearchLIShanru1,2WANGDon...  相似文献   

2.
3.
4.
5.
S D Brown 《Genomics》1992,13(2):490-492
Genome-wide mapping efforts are moving toward the establishment of a 1-cM genetic map of the entire mouse genome. The bulk of linkage groups conserved between the mouse and the human genomes has been identified. Microsatellite mapping has had a major impact on the development of genome-wide genetic maps and, in particular, on genome-wide searches for polygenic disease loci. Some substantial regions of the mouse genome have a marker density of 1 cM or less and many of these regions are now physically mapped. Embryonic YAC contigs have been established in some physically mapped regions. A unitary, global mouse mapping database--the Mouse Genome Database--is under development along with associated software tools. Chromosome committees are having a major impact on the establishment and verification of chromosome maps through the preparation of published annual reports.  相似文献   

6.
7.
8.
9.
10.
11.
The Mouse Genome Database (MGD) (http://www.informatics.jax.org) one component of a community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology. MGD strives to provide an extensively integrated information resource with experimental details annotated from both literature and on-line genomic data sources. MGD curates and presents the consensus representation of genotype (sequence) to phenotype information including highly detailed information about genes and gene products. Primary foci of integration are through representations of relationships between genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse. Recent developments include a general implementation of database structures for controlled vocabularies and the integration of a phenotype classification system.  相似文献   

12.
13.
14.
15.
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; Söhl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.  相似文献   

16.

Background

Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question.

Principal Findings

Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal.

Conclusions

Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome.  相似文献   

17.
18.
Population genetic theory predicts discordance in the true phylogeny of different genomic regions when studying recently diverged species. Despite this expectation, genome-wide discordance in young species groups has rarely been statistically quantified. The house mouse subspecies group provides a model system for examining phylogenetic discordance. House mouse subspecies are recently derived, suggesting that even if there has been a simple tree-like population history, gene trees could disagree with the population history due to incomplete lineage sorting. Subspecies of house mice also hybridize in nature, raising the possibility that recent introgression might lead to additional phylogenetic discordance. Single-locus approaches have revealed support for conflicting topologies, resulting in a subspecies tree often summarized as a polytomy. To analyze phylogenetic histories on a genomic scale, we applied a recently developed method, Bayesian concordance analysis, to dense SNP data from three closely related subspecies of house mice: Mus musculus musculus, M. m. castaneus, and M. m. domesticus. We documented substantial variation in phylogenetic history across the genome. Although each of the three possible topologies was strongly supported by a large number of loci, there was statistical evidence for a primary phylogenetic history in which M. m. musculus and M. m. castaneus are sister subspecies. These results underscore the importance of measuring phylogenetic discordance in other recently diverged groups using methods such as Bayesian concordance analysis, which are designed for this purpose.  相似文献   

19.
In mammals the molecular events that guide pattern formation during embryonic development have been difficult to characterize, partly because of difficulty in observing the development after implantation and in relating the phenotype of a dysmorphic mutation with a specific gene in which the mutation occurs. However, recent advances in the recombinant DNA technique and in manipulation techniques in mouse embryos have made it possible to clone genes involved in the process of development of mice. In addition, advances in human gene mapping and cloning have facilitated studies on mouse development. Thus, mice are now useful in research on developmental biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号