首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  • 1 Phenological day degree models are often used as warning systems for the emergence of arthropod pests in agricultural crops or the occurrence of natural enemies of the pest species. In the present study, we report on a case study of the European earwig Forficula auricularia L., which is an important natural enemy in pipfruit orchards, and describe how such a day degree model can be used to avoid negative effects of crucial orchard management, such as spray applications and soil tillage. A precise timing of these interventions in relation to the phenology of natural enemies will enhance biocontrol.
  • 2 Earwig population dynamics are characterized by single‐ and double‐brood populations, each with specific biological characteristics.
  • 3 A day degree model capable of predicting the phenology of local earwig populations of both population types was developed. The model was checked for accuracy by comparing the first field observation dates of various life stages with predicted values using temperature data from the nearest weather station. In addition, variation in development time was assessed using field data.
  • 4 The model was able to make predictions on a global scale. Although single‐ and double‐brood populations differ in phenology, the predictions of first appearance dates were similar. Variation in development time showed that single‐brood populations were more synchronized.
  • 5 Our phenological model provides an accurate tool for predicting and simulating earwig population dynamics, as well as for enhancing the biocontrol of pests in pipfruit orchards.
  相似文献   

2.
3.
Fusarium oxysporum and its biocontrol   总被引:9,自引:0,他引:9  
  相似文献   

4.
The two haplotypes of Varroa destructor that have been identified as parasites of the Western honeybee (Apis mellifera L.) show disparate levels of virulence towards honeybee colonies. The Korea haplotype has been associated with severe colony mortality, whereas untreated colonies of European A. mellifera have survived long-term infestation by the Japan haplotype. The possible existence of a benign haplotype of V. destructor raises the prospect that it be used to “inoculate” colonies to provide biocontrol of the virulent haplotype. The feasibility of such a strategy was investigated using a mathematical model. Competition for resources during reproduction is known to reduce varroa mites’ reproduction rates as their infestation levels increase. Results from modelling suggested this density-dependent effect is sufficient for an established benign population to prevent the virulent population reaching destructive levels if a colony is subject to sporadic influxes of virulent mites. A colony faced with a continuous influx of mites could be protected if the proportion of virulent mites in the influx were below a threshold level (dependent on length of breeding season and intensity of influx). This condition might be achieved by “inoculating” neighbouring apiaries and controlling feral colonies in the vicinity. Decreased brood cell invasion rate by the benign haplotype decreased the threshold level. Any reproductive isolation between the benign and virulent haplotypes would cause further reproductive suppression, driving sporadic influxes of the virulent haplotype to extinction and conferring greater tolerance to a colony faced with a virulent influx. Increased colony resistance to varroa in the model was synergistic with the inoculation of colonies in the absence of reproductive isolation, but potentially antagonistic in its presence—although not to an extent that would preclude their joint use.  相似文献   

5.
微生物次生代谢产物的研究对开发微生物源农药具有重要意义。近年来一系列根际来源的铜绿假单胞菌被分离和鉴定,因其产生抑菌次生代谢产物,具有很好的生物防治效果。本文将系统综述铜绿假单胞菌生防菌株的种类及其抑菌代谢产物的多样性,并进一步介绍铜绿假单胞菌生防菌株的抑菌代谢产物合成机制及其遗传改造,简要讨论铜绿假单胞菌生防菌株抑菌代谢产物在生物防治上的应用和前景。  相似文献   

6.
7.
Since their discovery almost a century ago, bacterial viruses (bacteriophages or ‘phages’) have been used to prevent and treat a multitude of bacterial infections (phage therapy: PT). In addition, they have been the basis for many advances in genetics and biochemistry. Phage therapy was performed on human subjects in the United States, Europe and Asia in the few decades following their discovery. However, Western countries largely abandoned PT in favour of antibiotics in the 1940s. The relatively recent renaissance of PT in the West can be attributed partly to the increasing prevalence of antibiotic resistance in human and animal pathogens. However, the stringent controls on human trials now required in the United States and Europe have led to a greater number of domestic animal and agricultural applications as an alternative to PT in man. This trend is set to continue, at least in the short term, with recent approval from the Food and Drug Administration allowing commercial phage treatments to be used in human food in the USA. Nevertheless, despite these significant milestones and the growing number of successful PT trials, significant obstacles remain to their widespread use in animals, food and ultimately medicine in many parts of the world. This review will provide a brief overview of the history of PT in the West and will summarize some of the key findings of phage biocontrol studies in animals and meat products.  相似文献   

8.
9.
Waterborne bacterial pathogens in wastewater remains an important public health concern, not only because of the environmental damage, morbidity and mortality that they cause, but also due to the high cost of disinfecting wastewater by using physical and chemical methods in treatment plants. Bacteriophages are proposed as bacterial pathogen indicators and as an alternative biological method for wastewater treatment. Phage biocontrol in large scale treatment requires adaptive and aggressive phages that are able to overcome the environmental forces that interfere with phage–host interactions while targeting unwanted bacterial pathogens and preventing biofilms and foaming. This review will shed light on aspects of using bacteriophage programming technology in wastewater plants to rapidly target and reduce undesirable bacteria without harming the useful bacteria needed for biodegradation.  相似文献   

10.
Abstract

To select efficient antagonistic strain(s) of biocontrol agents against most of the existing pathotypes of Colletotrichum falcatum, an in vitro interaction study was carried out with 13 pathotypes, 12 isolates of Pseudomonas spp. and 6 isolates of Trichoderma spp. Antagonistic pseudomonad strains exhibited greater variation in their activity depending on the virulence of the pathotype. The lower the pathogen virulence, the higher was the antagonistic activity noticed. In general, sub-tropical pathotypes were suppressed at a comparatively higher level than the tropical pathotypes. Among the four efficient P. fluorescens strains selected based on their inhibitory effect against various pathotypes, ARR1G and VPT4 were effective against tropical pathotypes and FP7 showed moderate effect against all the pathotypes. The strain KKM2 was effective against sub-tropical and weaker tropical pathotypes. Strains of Trichoderma spp. did not show much variation in antagonism, but varied in their mode of action in suppressing the pathogen growth. However, based on higher rate of hyperparasitism, T. harzianum strains T5 and T62 were selected against all the pathotypes.  相似文献   

11.
  1. Download : Download high-res image (46KB)
  2. Download : Download full-size image
  相似文献   

12.
Plant diseases, caused by various microorganisms, including viruses, bacteria, fungi, protozoa and nematodes, affect agricultural practices and result in significant crop losses. Fungal pathogens are the major cause of plant diseases and infect most plants. Agrochemicals play a significant role in plant disease management to ensure a sustainable and productive agricultural system. However, the intensive use of chemicals has adverse effects on humans and ecosystem functioning and also reduces agricultural sustainability. A sustainable agriculture is achieved through reduction or elimination of fertilizers and agrochemicals, resulting in minimal impact to the environment. Recently, the use of antagonistic endophytes as biocontrol agents is drawing special attention as an attractive option for management of some plant diseases, resulting in minimal impact to the environment. Endophytes that resides asymptomatically within a plant, have the potential to provide a source of candidate strains for potential biocontrol applications. This review addresses biocontrol methods using endophytic fungi such as Colletotrichum, Cladosporium, Fusarium, Pestalotiopsis and Trichoderma species as an attractive option for management of some plant diseases. Potential endophytes are screened in vitro and in vivo to test their antagonistic actions by different mechanisms, including mycoparasitism, production of lytic enzymes and/or antibiotics and induction of plant defenses. Currently, efforts are being made to commercialize these biocontrol agents. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents may contribute to sustainable agriculture.  相似文献   

13.
Antibiotic production by bacterial biocontrol agents   总被引:35,自引:0,他引:35  
Interest in biological control of plant pathogens has been stimulated in recent years by trends in agriculture towards greater sustainability and public concern about the use of hazardous pesticides. There is now unequivocal evidence that antibiotics play a key role in the suppression of various soilborne plant pathogens by antagonistic microorganisms. The significance of antibiotics in biocontrol, and more generally in microbial interactions, often has been questioned because of the indirect nature of the supporting evidence and the perceived constraints to antibiotic production in rhizosphere environments. Reporter gene systems and bio-analytical techniques have clearly demonstrated that antibiotics are produced in the spermosphere and rhizosphere of a variety of host plants. Several abiotic factors such as oxygen, temperature, specific carbon and nitrogen sources, and microelements have been identified to influence antibiotic production by bacteria biocontrol agents. Among the biotic factors that may play a determinative role in antibiotic production are the plant host, the pathogen, the indigenous microflora, and the cell density of the producing strain. This review presents recent advances in our understanding of antibiotic production by bacterial biocontrol agents and their role in microbial interactions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
A total of 586 natural wine yeasts, belonging to different genera, were tested for their antagonistic effect on fungal pathogens. A low percentage of yeast strains completely inhibited the pathogens and the biocontrol activity was found to be a strain characteristic and did not solely depend on species or genus. Among the antagonists, two strains of Saccharomyces cerevisiae and one of Zygosaccharomyces showed a broad spectrum of antagonistic activity against 10 fungal pathogens.  相似文献   

15.
The adults of many parasitoid species require nectar for optimal fitness, but very little is known of flower recognition. Flight cage experiments showed that the adults of an egg parasitoid (Trichogramma carverae Oatman and Pinto) benefited from alyssum (Lobularia maritima L.) bearing white flowers to a greater extent than was the case for light pink, dark pink or purple flowered cultivars, despite all cultivars producing nectar. Survival and realised parasitism on all non-white flowers were no greater than when the parasitoids were caged on alyssum shoots from which flowers had been removed. The possibility that differences between alyssum cultivars were due to factors other than flower color, such as nectar quality, was excluded by dying white alyssum flowers by placing the roots of the plants in 5% food dye (blue or pink) solution. Survival of T. carverae was lower on dyed alyssum flowers than on undyed white flowers. Mixing the same dyes with honey in a third experiment conducted in the dark showed that the low level of feeding on dyed flowers was unlikely to be the result of olfactory or gustatory cues. Flower color appears, therefore, to be a critical factor in the choice of plants used to enhance biocontrol, and is likely also to be a factor in the role parasitoids play in structuring invertebrate communities.  相似文献   

16.
The use of the fungal genus Trichoderma to control fungal plant diseases is a promising alternative to the use of chemical compounds. The aim of this work has been to obtain Trichoderma strains with improved capacity as biological control agents. To do so, the hydrolytic capacity on fungal cell walls of strains of the fungus Trichoderma harzianum has been increased. On one hand, transformation experiments with genes which coded for chitinases and glucanases have been carried out in T. harzianumstra ins. On the other hand, the medium composition has also been modified in order to eliminate proteolytic degradation of some of the overproduced enzymes. Finally, hybrid chitinolytic enzymes with substrate-binding domains have been produced as an alternative to obtain improved biocontrol strains. The transformant strains, when compared with the wild type, showed improved antifungal capacity against the phytopathogenic fungus Rhizoctonia solani, in in vitro experiments.  相似文献   

17.
The yeast Pichia anomala has antifungal activities and its potential in biocontrol and biopreservation has previously been demonstrated. To practically use an organism in such applications on a larger scale the microbe has to be formulated and stabilised. In this review we give an overview of our experience of formulating and stabilising P. anomala strain J121 in a wider perspective. The stabilisation techniques we have evaluated were liquid formulations, fluidised bed drying, lyophilisation (freeze-drying) and vacuum drying. With all methods tested it was possible to obtain yeast cells with shelf lives of at least a few months and in all cases the biocontrol activity was retained. Fluidised bed drying was dependent on the addition of cottonseed flour as a carrier during the drying process. In liquid formulations a sugar, preferentially trehalose, was a required additive. These two kinds of microbial stabilisation are easily performed and relatively inexpensive but in order to keep the cells viable the biomaterial has to be stored at cool temperatures. However, there is room for optimization, such as improving the growth conditions, or include preconditioning steps to enable the cells to produce more compatible solutes necessary to survive formulation, desiccation and storage. In contrast, lyophilisation and vacuum drying require a lot of energy and are thus expensive. On the other hand, the dried cells were mostly intact after one year of storage at 30°C. Inevitably, the choice of formulation and stabilisation techniques will be dependent also on the intended use.  相似文献   

18.
Wolbachia bacteria are an unsuspected, but potentially important, component of many biocontrol programs. To heighten awareness of these bacteria, we review current knowledge of Wolbachia and their possible application in biocontrol research. Wolbachia promote their spread by altering the reproductive success of their arthropod hosts. This ability frequently is identified as having potential either to reduce populations of pest species, or to increase populations of beneficial species. However, only 19 and 1% of peer-reviewed research articles (n=844) on Wolbachia appear in arthropod- and biocontrol-specific journals, respectively. Although Wolbachia will not have application for all programs, their prevalence cannot be denied. We screened for Wolbachia in populations of arthropods of current interest to biocontrol programs in Canada. Infections were detected in 47% of 177 populations, representing 46% of the 105 species tested. Greater awareness, in combination with the rapidly expanding knowledge base of Wolbachia and similar endosymbionts, offers new directions for research in biocontrol programs. We recommend that all arthropod species in biocontrol programs be screened for these bacteria.  相似文献   

19.
Aims: Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Methods and Results: Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual‐culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. Conclusions: This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. Significance and Impact of the Study: A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.  相似文献   

20.
Marine yeasts as biocontrol agents and producers of bio-products   总被引:1,自引:0,他引:1  
As some species of marine yeasts can colonize intestine of marine animals, they can be used as probiotics. It has been reported that β-glucans from marine yeast cells can be utilized as immuno-stimulants in marine animals. Some siderophores or killer toxins produced by marine yeasts have ability to inhibit growth of pathogenic bacteria or kill pathogenic yeasts in marine animals. The virulent factors from marine pathogens can be genetically displayed on marine yeast cells, and the yeast cells displaying the virulent factors can stimulate marine animals to produce specific antibody against the pathogens. Some marine yeast cells are rich in proteins and essential amino acids and can be used in nutrition for marine animals. The marine yeast cells rich in lipid can be used for biodiesel production. Recently, it has been reported that some strains of Yarrowia lipolytica isolated from marine environments can produce nanoparticles. Because many marine yeasts can remove organic pollutants and heavy metals, they can be applied to remediation of marine environments. It has been shown that the enzymes produced by some marine yeasts have many unique properties and many potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号