首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated three independent clones for nuclear elongator tRNAMet genes from an Arabidopsis DNA library using a tRNAMet-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNAMet is dispersed at at least eight loci in the genome. The unspliced precursor tRNAMet intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNAMet genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5-distal end of each intron.  相似文献   

2.
3.
4.
《FEBS letters》1986,202(1):12-18
The digestion of yeast initiator methionine tRNA with mung bean nuclease and U2 ribonuclease yielded 5'- and 3'-fragments, respectively. These two fragments together represent the entire tRNA sequence except for A35, the central nucleotide of the anticodon, and the CCA terminus. Using RNA ligase, a cytosine was added and the anticodon loop having a C35 was reformed. Subsequent treatment of this product with CCA-transferase yielded a full-length methionine tRNA having an arginine CCU anticodon. This recombinant tRNAMet (CCU) was charged with methionine by the yeast tRNA synthetase. Aminoacylation of the recombinant was however less extensive than in the case of native tRNAMet (CAU). After aminoacylation the recombinant tRNA formed an 80 S ribosomal complex.  相似文献   

5.
The transient expression of three novel plant amber suppressors derived from a cloned Nicotiana tRNASer(CGA), an Arabidopsis intron-containing tRNATyr(GTA) and an Arabidopsis intron-containing tRNAMet(CAT) gene, respectively, was studied in a homologous plant system that utilized the Agro bacterium-mediated gene transfer to Arabidopsis hypocotyl explants. This versatile system allows the detection of β-glucuronidase (GUS) activity by histochemical and enzymatic analyses. The activity of the suppressors was demonstrated by the ability to suppress a premature amber codon in a modified GUS gene. Co-transformation of Arabidopsis hypocotyls with the amber suppressor tRNASer gene and the GUS reporter gene resulted in ~10% of the GUS activity found in the same tissue transformed solely with the functional control GUS gene. Amber suppressor tRNAs derived from intron-containing tRNATyr or tRNAMet genes were functional in vivo only after some additional gene manipulations. The G3:C70 base pair in the acceptor stem of tRNAMet(CUA) had to be converted to a G3:U70 base pair, which is the major determinant for alanine tRNA identity. The inability of amber suppressor tRNATyr to show any activity in vivo predominantly results from a distorted intron secondary structure of the corresponding pre-tRNA that could be cured by a single nucleotide exchange in the intervening sequence. The improved amber suppressors tRNATyr and tRNAMet were subsequently employed for studying various aspects of the plant-specific mechanism of pre-tRNA splicing as well as for demonstrating the influence of intron-dependent base modifications on suppressor activity.  相似文献   

6.
Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNATyr G A and elongator tRNAMet CmAU contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNATyr. Here we have studied the expression of an Arabidopsis elongator tRNAMet gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNAMet precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNAMet to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3 and 5 splice sites and of a structured intron for pre-tRNAMet splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNAMet splicing and that a highly structured intron is indispensable for pre-tRNAMet splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNAMet gene, is efficiently processed and spliced in both plant extracts.  相似文献   

7.
The Saccharomyces cerevisiae gene RIT1 encodes a phospho-ribosyl transferase that exclusively modifies the initiator tRNA (tRNAMet i) by the addition of a 2′-O-ribosyl phosphate group to Adenosine 64. As a result, tRNAMet i is prevented from participating in the elongation steps of protein synthesis. We previously showed that the modification is not essential for the function of tRNAMet i in the initiation of translation, since rit1 null strains are viable and show no obvious growth defects. Here, we demonstrate that yeast strains in which a rit1 null allele is combined with mutations in any of the genes for the three subunits of eukaryotic initiation factor-2 (eIF-2), or with disruption alleles of two of the four initiator methionine tRNA (IMT) genes, show synergistic growth defects. A multicopy plasmid carrying an IMT gene can alleviate these defects. On the other hand, introduction of a high-copy-number plasmid carrying the TEF2 gene, which encodes the eukaryotic elongation factor 1α (eEF-1α), into rit1 null strains with two intact IMT genes had the opposite effect, indicating that increased levels of eEF-1α are deleterious to these strains, presumably due to sequestration of the unmodified met-tRNAMet i for elongation. Thus, under conditions in which the components of the ternary met-tRNAMet i:GTP:eIF-2 complex become limiting or are functionally impaired, the presence of the 2′-O-ribosyl phosphate modification in tRNAMet i is important for the provision of adequate amounts of tRNAMet i for formation of this ternary complex.  相似文献   

8.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

9.
Analysis of a drosophila tRNA gene cluster   总被引:23,自引:0,他引:23  
  相似文献   

10.
11.
The arrangement of the reiterated DNA sequences complementary to transfer RNA has been studied in Xenopus laevis. Prehybridization of denatured DNA with an excess of unfractionated tRNA results in a small but well-defined increase in the buoyant density of fragments which contain sequences homologous to tRNA. The density increase is smaller than that found for 5 S DNA, but is the same or nearly so for all tRNA coding sequences examined. These results indicate that the majority of tRNA genes are clustered together with spacer DNA, the average size of which is estimated to be approximately 0.5 × 106 daltons (native) DNA.In high molecular weight native DNA preparations, the sequences homologous to unfractionated tRNA, tRNAVal, tRNA1Met and tRNA2Met band in CsCl at 1.707, 1.702, 1.708 and 1.711 g cm?3, respectively. The mean buoyant densities are constant at all molecular weights examined but they do not correspond to the base compositions of the complementary tRNA species. These results indicate that isocoding genes are linked to spacer DNA in separate and extensive gene clusters, and that the different clusters contain different spacer DNA sequences. These clusters form well-defined cryptic DNA satellites which are potentially separable from each other as well as from other chromosomal DNA.  相似文献   

12.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

13.
Thermodynamic analysis of transfer RNA unfolding   总被引:3,自引:0,他引:3  
  相似文献   

14.
In Xenopus laevis, genes encoding tRNAPhe, tRNATyr, tRNA 1 Met , tRNAAsn, tRNAAla, tRNALeu, and tRNALys are clustered within a 3.18-kb (kilobase) fragment of DNA. This fragment is tandemly repeated some 150 times in the haploid genome and its components are found outside the repeat only to a limited extent. The fragment hybridizes in situ to a single site very near the telomere on the long arm of one of the acrocentric chromosomes of the group comprising chromosomes 13–18. All the chromosomes of this group also hybridize with DNA coding for oocyte-specific 5S RNA. The tRNA gene cluster is slightly proximal to the cluster of 5S RNA genes.We respectfully dedicate this paper to Prof. H. Bauer on the occasion of his 80th birthday.  相似文献   

15.
Transfer RNA with l-methionine acceptor activity was extracted from preimplantation rabbit embryos and purified on reverse-phase-3 columns. The molar quantity of methionine acylated to RNA increases as embryo development proceeds from the 16-cell stage to the 80,000 cell blastocyst stage. However, the quantity of methionyl-tRNA per genome declines 100-fold as the embryo cell number increases. Formylation of methionyl-tRNA illustrated that approximately one-third of tRNAMet extracted was tRNAfMet. Methylation of purified methionyl-tRNA by an adult rabbit liver methylase extract illustrated that two-day preimplantation embryo tRNA is highly hypomethylated relative to tRNA from later stages of development. The hypomethylated methionyl-tRNA was also less effective in ribosome binding studies than more fully methylated methionyl-tRNA present in the later stages of embryo development.  相似文献   

16.
The initiator methionine transfer RNA (tRNAf Met) gene was identified on a 347 bpEco RI-Hind III DNA fragment of the potato mitochondrial (mt) genome. The sequence of this gene shows 1 to 7 nucleotide differences with the other plant mt tRNAsf Met or tRNAf Met genes studied so far. Whereas the tRNAf Met gene is present as a single copy in the potato mt genome, a tRNA pseudogene corresponding to 60% of a complete tRNA (from the 5 end to the variable region) and located at 105 nucleotides upstream of the tRNAf Met gene on the opposite strand was shown to be repeated at least three times. Furthermore, the physical environment of the tRNAf Met gene in the mt genome is very different among plants, which suggests that the tRNAf Met gene region has often been implicated in recombination events of plant mt genomes leading to important rearrangements in gene order.  相似文献   

17.
Two methionyl-transfer RNA synthetases (A and B forms) have been isolated from Mycobacterium smegmatis. The homogeneous preparations of the enzymes showed 1500 fold increase in specific activity in aminoacylation of methionine specific tRNA. The A and B forms differed in their specificity of aminoacylation of tRNAmMet and tRNAfMet; enzyme B exhibited much higher specificity for tRNAfMet. The molecular activities of A and B enzymes for aminoacid and tRNA were identical. The turnover number for aminoacid was 27 fold greater than that for tRNA, while the Km values for tRNA were lower by a factor of 106 as compared to the aminoacid. Both the enzymes catalysed ATP-pyrophosphate exchange reaction to the same extent.  相似文献   

18.
Origin of splice junction phosphate in tRNAs processed by HeLa cell extract   总被引:21,自引:0,他引:21  
W Filipowicz  A J Shatkin 《Cell》1983,32(2):547-557
Two cloned tRNA genes that contain intervening sequences, yeast tRNAUCGSer and Xenopus laevis tRNATyr, were transcribed in HeLa cell extract. Precursor tRNAs were formed, and were converted to spliced products by a process of excision-ligation. The novel sequences resulting from ligation of tRNA half-molecules were examined by fingerprinting and nearest neighbor analyses. The results indicate that during tRNA splicing in HeLa cell extract, the 3′-terminal phosphate of the 5′ half-molecule is incorporated into a normal 3′,5′-phosphodiester linkage that forms the splice junction. This ligation pathway in HeLa cell extract is distinct from the one described previously in wheat germ extract, which involves formation of 2′-phosphomonoester, 3′,5′-phosphodiester
linkage with the 3′,5′-bond derived from a 5′-terminal phosphate.  相似文献   

19.
A chloroplast tRNAmMet species from Scenedesmusobliquus is very poorly 5′-end [32P] labelled using [γ-32P]ATP and T4 polynucleotide kinase. In sequencing the tRNA using standard 5′-labelled methods a very minor contaminating tRNA is preferentially labelled. The partial tRNA sequence determined by this method has an anticodon (CUC) for tRNAGlu.  相似文献   

20.
Crude E. coli tRNA or enriched methionine acceptor tRNA can be separated into three stiecies on a column of arginine-agarose. The first peak eluted is tRNAMet and the latter two peaks are two forms of tRNAMet f. From crude tRNA, tRNAMet m is obtained in approximately 50% purity. Arginine-agarose separates enriched methionine accepting tRNA into three homogeneous fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号