首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

2.
These studies were undertaken to determine the principal pathway of androgen biosynthesis by the testis of the marmoset Saguinus oedipus. Testicular fragments (25 mg) were incubated at 37°C in Krebs-Ringer bicarbonate buffer, pH 7.4, containing pregnenolone-7-3H (3β-hydroxy-5-pregnen-20-one) or progesterone-7-3H. Duplicate fragments were incubated with each substrate for 30 min, one hr, three hr, or five hr, for a total of 16 separate incubations. Metabolites were separated by paper and thin-layer chromatography, with identity established by recrystallization to constant specific activities and 3H/14C ratios. Pregnenolone was readily metabolized to progesterone, 17α-hydroxyprogesterone, androstenedione (4-androstene-3, 17-dione) and testosterone. Progesterone was converted to 17α-hydroxyprogesterone, androstenedione and testosterone. 17α-hydroxyprogesterone was the predominant metabolite obtained from both substrates at one, three and five hrs of incubation. Neither 17α-hydroxypregnenolone (3β-17-dihydroxy-5-pregnen-20-one) nor dehydroepiandrosterone (3β-hydroxy-5-androsten17-one) was detected in the incubates. These data suggest a predominant Δ4 pathway with accumulation of 17α-hydroxyprogesterone in the testis of this primate specie.  相似文献   

3.
The synthesis of labeled and non-labeled 3β,15α-dihydroxy-5-pregnen-20-one (V) and 3β, 15α-dihydroxy-5-androsten-17-one (XI) is described. Treatment of 15α-hydroxy-4-pregnene-3,20-dione (I) with acetic anhydride and acetyl chloride gave 3,15α-diacetoxy-3,5-pregnadien-20-one (II). The enol acetate (II) was ketalized by a modification of the general procedure to yield 3,15α-diacetoxy-3,5-pregnadien-20-one cyclic ethylene ketal (III) which was then reduced with NaBH4 and LiAlH4 to give 3β, 15α-dihydroxy-5-pregnen-20-one cyclic ethylene ketal (IV). Cleavage of the ketal group of IV gave V. Similarly, XI was prepared by starting with 15α-hydroxy-4-androstene-3,17-dione (VII). The (4-14C)-3β,15α-dihydroxy-5-pregnen-20-one was prepared by a modification of the above procedure in that the enol acetate (II)was directly reduced with NaBH4 and LiAlH4 to yield 5-pregnene-3β,15α,20β-triol (XIII) which was then oxidized enzymatically with 20β-hydroxysteroid dehydrogenase to V.  相似文献   

4.
R A Appell 《Steroids》1973,22(3):351-364
Changes in the invitro capacity to convert progesterone to its metabolites were studied in testes of adult rats hypophysectomized for varying lengths of time. After 30 days of hypophysectomy rats were injected for periods of 10 and 20 days with 100 i.u. of HCG daily to observe what changes could be induced in the testicular conversion of progesterone. Hypophysectomy increased the formation of 20α-hydroxy-4-pregnen-3-one and decreased the formation of testosterone. In hypophysectomized animals injected with HCG there was an immediate decrease in the 20α-hydroxy-4-pregnen-3-one formation, but no appreciable accumulation of testosterone, as the animals demonstrated an immature pattern of testicular function. The results indicate that 20α-hydroxy-4-pregnen-3-one may act as a positive feedback agent to prolong and heighten gonadotropin discharge, and confirm the importance of metabolites of testosterone prior to adulthood.  相似文献   

5.
A novel synthesis of 16α-hydroxy-4-androstene-3,17-dione (3), 16α-hydroxy-4-androstene-3, 6,17-trione (4), 17β-amino-5-androsten-3β-ol (10) and 17β-amino-4-androsten-3-one (14) is described. 16α-Bromoacetoxy-4-androstene-3, 17-dione (5), 16α-bromoacetoxy-4-androstene-3, 6,17-trione (6) and 17β-bromoacetylamino-4-androsten-3-one (15) were synthesized as potentially selective irreversible inhibitors of androgen aromatases. 16α-Bromo-4-androstene-3,17-dione (1) and 16α-bromo-4-androstene-3, 6,17-trione (2) were converted to compounds 3 and 4 in 80–90% yield by controlled stereospecific hydrolysis using sodium hydroxide in aqueous pyridine. Reductive amination of 3β-hydroxy-5-androsten-17-one and 3-methoxy-3,5-androstadien-17-one (11) using ammonium acetate and sodium cyanohydridoborate (NaBH3CN) and a subsequent treatment with acid gave the amines 10 and 14 respectively, as a salt. The corresponding 17-imino compounds 9 and 13 were also isolated from the reaction mixtures when methanol was used as a solvent for the reaction. The 16α-hydroxyl compounds 3 and 4 and the 17β-amino compound 14 were con- verted to the corresponding bromoacetyl derivatives, 5, 6, and 15, with bromoacetic acid and N,N'-dicyclohexylcarbodiimide.  相似文献   

6.
The epididymis of adult rats metabolize 3H-testosterone by experiments in vivo. Thirty minutes after the injection of 100 μCi 3H-testosterone, some 10 per cent of the total radioactivity of the epididymis was found in the water-soluble fraction, whereas 90 per cent was found in the ether soluble fraction (free steroids). The free steroids were examined further and the following androgenic metabolites identified: testosterone (17β-hydroxy-4-androsten-3-one) 8, 9%, androstendipne (4-androstene-3, 17-dione, 2,7%,5α-A-dione (5α-androstane-3, 17-dione) 6,5%, DHT (17β-hydroxy-5α-androstan-3-one) 47, 2%, 3β-diol (5α-androstane-3β, 17β-diol) 4, 4%, 3α-diol (5α-androstane-3α,17β-diol) 20, 8% and androsterone (3α-hydroxy-5α-androstan-3-one) 3,4%. The relative amount of each metabolite is given in per cent of total radioactivity in the ether soluble fraction.  相似文献   

7.
The ability of bovine liver and fat to metabolize progesterone and also to form glucuronide conjugates with these progestins in vitro was investigated. Tissue supernatants were incubated with [4-14C] progesterone, UDP-glucuronic acid, and a NADPH generating system for 5 hr, at 37°C. Steroids were identified by thin-layer chromatography, high performance liquid chromatography, and recrystallization to a constant specific activity. The total original radioactivity which could not be removed by exhaustive ether extraction (presumptive conjugates) was 44.7 ± 14.2% in liver, 5.0 ± 3.6% in subcutaneous fat, and 3.7 ± 2.2% in kidney fat samples. Progestins identified in liver samples include 5β-pregnane-3α, 20α-diol (free and conjugate), 5β-pregnane-3α, 20β-diol (free and conjugate), 3α-hydroxy-5sB-pregnan-20-one (free and conjugate), 3β-hydroxy-5β-pregnan-20-one (free), 5β-pregnane-3, 20-dione (free), and progesterone (conjugate). Progestins identified in both the free and conjugate fractions of subcutaneous fat and kidney fat samples include progesterone, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-4-pregnen-3-one, and 20α-hydroxy-4-pregnen-3-one. Differences due to sex of bovine used were noted. These results confirm the ability of bovine liver to readily metabolize progesterone and form glucuronide conjugates of these compounds and suggest that adipose tissues take an active role in these actions in cattle.  相似文献   

8.
To characterize Leydig cell steroidogensis, we examined the metabolism of (3H)pregnenolone (3β-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20–30% of the (3H)pregnenolone was converted to testosterone (17β-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3, 20-dione) were isolated. The Δ5 intermediates, 17-hydroxypregnenolone (3β, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the Δ4 pathway. On day 0 of culture, unidentified metabolites consisted of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H)pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3, 20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17–20 desmolase activity or that hCG acutely stimulates 3β-hydroxysteroid dehydrogenase and Δ45 isomerase activities.  相似文献   

9.
F V Nowak  H J Karavolas 《Steroids》1974,24(3):351-357
3H-20α-hydroxy-4-pregnen-3-one was incubated with anterior pituitaries from proestrous rats. The in vitro metabolic products, identified by reverse isotopic dilution and purification to constant specific activity, were 20α-hydroxy-5α-pregnan-3-one (23.0%) and 5α-pregnane-3α,20α-diol (11.4%). These are qualitatively the same metabolites which result from in vitro incubation of 20α-hydroxy-4-pregnen-3-one with medial basal hypothalamus. 68.8% of the recovered radioactivity remained as 20α-hydroxy-4-pregnen-3-one. These three compounds accounted for all of the recovered radioactivity.  相似文献   

10.
The effect of position substituents on sulfuric acid-induced fluorescence of corticosteroids was examined. Of all the steroids tested, 11β,17α-dihydroxy-3-keto-4-androsten-17β-carboxylic acid gave the greatest relative fluorescence intensity with a value approximately four times that of cortisol. All but two steroids yielding relative fluorescence values greater than 2% of that of cortisol had an 11β-OH moiety. The two exceptions were 20α-hydroxy-4-pregnen-3-one and 20β-hydroxy-4-pregnen-3-one. The following characteristics were common to those steroids yielding sulfuric acid-induced fluorescence: All contained an oxygen substituent of carbon 20. At least one hydroxyl group was present on the side chain. If an 11-hydroxyl group occurred an additional hydroxyl oxygen was found at position 17 or 21 or both. If an 11-hydroxylated substituent was absent, then positions 17 and 21 were both devoid of oxygen. The 18-aldehyde group or Δ1 unsaturation strongly suppressed fluorescence.  相似文献   

11.
The in vitro and in vivo metabolism of 1,2- 3H-progesterone was studied in estrogen-stimulated and control vaginae of ovariectomized mice. Employing two-dimensional thin-layer chromatography, gas-liquid chromatography and metabolite “trapping” techniques, the major and minor pathways for progesterone metabolism were determined in vitro and shown to involve saturation of the Δ4-double bond to yield 5α-pregnane compounds and reduction of the C20 and C3 ketone groups to form 20α- and 3α- and 3β-hydroxy derivatives, respectively. The quantities of 20β-hydroxy metabolites and 5β-epimers that were detected were considered not to be significant. The major metabolites formed by untreated tissues following in vitro incubation in the presence of both high (10?6M) and low (10?8M) progesterone concentrations were 3α-hydroxy-5α-pregnan-20-one and 5α-pregnane-3,20-dione. Although these two derivatives were also found in sizable quantities in estrogen-treated tissues, a marked increase (5-fold) in the rate of C20 ketone reduction at high progesterone concentrations (10?6M) to yield 20α-hydroxy-4-pregnen-3-one was demonstrated. Following intravaginal administration of 3H-progesterone in vivo, only progesterone and 3α-hydroxy-5α-pregnan-20-one were retained in appreciable quantities through 2 hr, suggesting rapid loss of 20α-hydroxy-4-pregnen-3-one and the 5α-pregnanediols from this tissue under in vivo conditions.  相似文献   

12.
The following steroids have been identified by combined gas chromatography-mass spectrometry in a urine specimen collected from a newborn chimpanzee; 5-androstene-3β, 17α-diol, 3β,16α (and 16β)-dihydroxy-5-androsten-17-one, 5-androstene-3β, 16α, 17β-triol, 5-androstene-3β, 16β, 17α-triol, 5-pregnene-3β, 20α-diol, 5-pregnene-3β, 20α, 21-triol, 3β,21-dihydroxy-5-pregnen-20-one, 3β, 16α-dihydroxy-5-pregnen-20-one, 5-Piegnene-3β, 16α,20α, 21-tetrol, 5-pregnene-3β,17α, 20ξ, 21-tetrol androstenetriolones and androstenetetrols.  相似文献   

13.
The influence of androgens on the FSH modulation of progestin biosynthetic enzymes was studied in vitro. Granulosa cells obtained from immature, hypophysectomized, estrogen-treated rats were cultured for 3 days in a serum-free medium containing FSH (20 ng/ml) with or without increasing concentrations (10?9?10?6 M) of 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone; DHT), 5α-androstane-3α, 17β-diol (3α-diol), or the synthetic androgen 17β-hydroxy-17-methyl-4,9,11-estratrien-3-one (methyltrienolone; R1881). FSH treatment increased progesterone and 20α-hydroxy-4-pregnen-3-one(20α-OH-P) production by 10.2- and 11-fold, respectively. Concurrent androgen treatment augmented FSH-stimulated progesterone and 20α-OH-P production in a dose-related manner (R1881 > 3α-diol > DHT). In the presence of an inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), the FSH-stimulated pregnenolone (3β-hydroxy-5-pregnen-20-one) production (a 20-fold increase) was further enhanced by co-treatment with R1881, 3α-diol or DHT. Furthermore, FSH treatment increased 4.4-fold the activity of 3β-HSD, which converts pregnenolone to progesterone. This stimulatory action of FSH was further augmented by concurrent androgen treatment. In contrast, androgen treatment did not affect FSH-stimulated activity of a progesterone breakdown enzyme, 20α-hydroxysteroid dehydrogenase(20α-HSD). These results demonstrate that the augmenting effect of androgens upon FSH-stimulated progesterone biosynthesis is not due to changes in the conversion of progesterone to 20α-OH-P, but involves an enhancing action upon 3β-HSDΔ5, Δ4-isomerase complexes and additional enzymes prior to pregnenolone biosynthesis.  相似文献   

14.
The first chemical synthesis of 3α,7α-dihydroxy-5β-androstan-17-one and 3α-hydroxy-5β-androstane-7,17-dione is reported. In this method, the 17β-side chain of commercial chenodesoxycholic acid was degraded in 6 steps after selective protection of the hydroxyl groups : 3α-OH by a tert-butyldimetfaylsilyl group and 7α-OH by an acetoxy group. The capacity of 3α,7α-dihydroxy-5β-androstan-17-one and 3α-hydroxy-5β-androstane-7, 17-dione to release a pyrogen by human leukocytes was investigated by two independent methods : supernatants from leukocytes incubated with a steroid are injected to rabbits whose fever is measured, or tested by the Limulus Test (a pyrogen detection technique). The 7-keto substituted etiocholanolone still possessed pyrogenic activity, while the 7α-hydroxyl substituted one did not.  相似文献   

15.
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105, 000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1, 2-3h]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M ? 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1, 2-α-methylene-6-chloro-pregn-4, 6-diene-17α-o1–3, 20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

16.
The epididymis of adult rats metabolizes 3H-testosterone by experiments invitro. After incubation of slices from epididymal tissue for 2 hrs at 37°C, 8% of the total radioactivity was found in the water-soluble fraction, whereas 92% in the ether soluble fraction (free steroids). The free steroids were examined further and the following metabolites identified: testosterone (17β-hydroxy-4-androsten-3-one) 10,4%, androstendione (4-androstene-3,17-dione) 6,2%, 5α-A-dione (5α-androstane-3,17-dione) 7,3%, DHT (17β-hydroxy-5α-androstane-3-one) 39,3%, 3α-diol (5α-androstane-3α,17β-diol) 22,7%, 3β-diol (5α-androstane-3β,17β-diol) 4,6% and androsterone(3α-hydroxy-5α-androstan-17-one) 8,9%. The relative amount of each metabolite is given in per cent of the total radioactivity in the ether soluble fraction. When segments (caput, corpus, cauda) of epididymis were incubated in the same way, differences in steroid metabolism were demonstrated. Characteristic for caput epididymidis was high formation of DHT (58,4%) and 3α-diol (23,5%). Corpus epididymidis showed lower formation of DHT (50,6%) and 3α-diol (12,7%), but an approximately 3 times higher formation of 5α-A-dione (12,0%) than caput (3,4%) and cauda (3,5%). Cauda epididymis showed the lowest formation of DHT (38,3%), whereas 3α-diol (29,1%) and androsterone (11,4%) formation were relatively high. The ratio between 17β-hydroxy metabolites (DHT and androstanediols) and 17-keto metabolites were much higher in the caput (8,8) than in the corpus (3,2) and cauda (3,6), indicating a higher 5α-reductase activity in this segment.  相似文献   

17.
Androgen receptors in rat testis   总被引:1,自引:0,他引:1  
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105,000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1,2-3H]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M — 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1,2-α-methylene-6-chloro-pregn-4, 6-diene-17α-ol-3,20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

18.
Sertoli cells from 10 day old rats convert androstenedione to testosterone and 5α-androstane-3α,17β-diol, testosterone to 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α,17β-diol, and 17β-hydroxy-5α-androstan-3-one to 5α-andro-stane-3α,17β-diol after 72 hours in vitro. Conversions of androstenedione to testosterone and 5α-androstane-3α,17β-diol, and testosterone to 5α-androstane-3α,17β-diol were 2 to 3 times greater in FSH treated cultures. Steroid conversion was not stimulated significantly by LH or TSH. The results are interpreted as evidence that in young rats Sertoli steroid metabolism is stimulated by FSH, that Sertoli cells are an androgen target and that FSH may induce or facilitate Sertoli androgen responsiveness.  相似文献   

19.
In total, 481 fungal strains were screened for the ability to carry out 7(α/β)-hydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androsten-17-one). Representatives of 31 genera of 15 families and nine orders of ascomycetes, 17 genera of nine families and two orders of zygomycetes, two genera of two families and two orders of basidiomycetes, and 14 genera of mitosporic fungi expressed 7(α/β)-hydroxylase activity. The majority of strains were able to introduce a hydroxyl group to position 7α. Active strains selectively producing 3β,7α-dihydroxy-5-androsten-17-one were found among Actinomucor, Backusella, Benjaminiella, Epicoccum, Fusarium, Phycomyces and Trichothecium, with the highest yield of 1.25 and 1.9 g L?1 from 2 and 5 g L?1 DHEA, respectively, reached with F. oxysporum. Representatives of Acremonium, Bipolaris, Conidiobolus and Curvularia formed 3β,7β-dihydroxy-5-androsten-17-one as a major product from DHEA. The structures of the major steroid products were confirmed by TLC, gas chromatography (GC), mass spectra (MS), and 1H-NMR analyses.  相似文献   

20.
James C. Coffey 《Steroids》1973,22(4):561-566
Rat submaxillary gland homogenates incubated in vitro with progesterone-1, 2-3H converted the substrate to several products. Three products, 20α-hydroxy-4-pregnen-3-one, 5α-pregnane-3,20-dione and 17α-hydroxy-4-pregnene-3,20-dione, were characterized by thin-layer chromatography and recrystallization to constant specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号