首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beg MA  Sanwal PC  Yadav MC 《Theriogenology》1997,47(2):423-432
A study was designed to determine whether superovulatory and endocrine responses in buffalo differ when gonadotropin treatment is initiated at midluteal and late luteal stages of the estrous cycle. Twenty-eight buffalo were randomized into 4 groups (A, B, C and D). Buffalo in Groups A and B (n = 8 each) were superovulated with Folltropin (total dose 25 mg) and Lutalyse. Treatments in Group A were initiated between Days 8 to 10 (midluteal group) and in Group B between Days 13 to 15 (late luteal group) of the estrous cycle. Buffalo in Groups C and D (n = 6 each) were not superovulated and served as controls. Blood samples from all groups of buffalo were collected daily for plasma progesterone and estradiol determinations. The number of corpora lutea (CL) and unovulated follicles was recorded (following per rectum palpations) 5 or 6 d post-estrus. Buffalo in Groups A and B exhibited estrus in larger proportions and earlier (49.33 +/- 3.82 h and 46.67 +/- 2.46 h, respectively) than the control Groups C and D (77.33 +/- 5.33 h and 78.0 +/- 3.83 h, respectively). Mean number of CL was higher in Group B (3.38 +/- 0.46) than in Group A (2.25 +/- 0.75), however,the difference was not significant (P > 0.05). Plasma progesterone concentrations on the day of treatment were higher in late luteal superovulated and control groups than in midluteal superovulated and control groups. In both Groups A and B progesterone levels were significantly related (r = 0.78,0.76; P < 0.05) to the number of CL palpated after the superovulatory estrus. Progesterone levels on the day of estimation of ovarian response were approximately 4 times higher in Groups A and B than in Groups C and D. Peak estradiol concentrations were approximately twice as high in superovulated groups as in control groups.  相似文献   

2.
The relationship between progesterone (P4) synthesis in vitro by luteal tissue and prostaglandin F (PGF) synthesis in vitro by endometrium and luteal tissue from two stages of the cycle, Days 7 to 8 and 15 to 16, was determined. Luteal and endometrial tissues were collected from pigs in three experimental groups at two stages of the cycle: (A) 6 pigs on Days 7 to 8 with spontaneous, 5 to 6 day old corpora lutea (CL); (B) 5 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL; and (C) 6 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL and 5 to 6 day old CL induced by pregnant mares serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG) injections. Pigs with spontaneous, 13 to 14 day old CL of the cycle and PMSG-HCG induced accessory, 5 to 6 day old CL were used so that P4 and PGF synthesis in tissue from old and new CL could be compared in the same pig on Day 15 to 16 of the cycle. Tissues (100 mg minces) were incubated in 5 ml of Krebs Ringer solution in an atmosphere of 95% 02:5% CO2 for 2 hours at 0° C, 37° C, or 37° C with 1.3 x 10?4M indomethacin (IND). An aliquot of the incubation medium and an aliquot of the supernatant after homogenization of the tissue in the remaining medium of each flask was quantified for P4 and PGF by radioimmunoassay. P4 and PGF release into the medium and total accumulation of P4 and PGF in the flasks indicated that de novo synthesis had occured at 37° C. Compared to tissue from 13 to 14 day old CL, tissue from 5 to 6 day old CL synthesized more P4 per flask (53.9 vs 25.0 ng/mg tissue, P<.001) and released more P4 into the medium (20.8 vs 8.8 ng/mg, P<.001). P4 synthesis by luteal tissue from 5 to 6 day old and 13 to 14 day old CL from pigs in group C was similar to P4 synthesis by luteal tissue from pigs in group A and group B, respectively. Luteul PGF synthesis was not affected significantly by either the age of the CL or by PMSG-HCG treatment. For endometrial samples, the synthesis of PGF was not significantly different among pigs in groups A, B and C. If uterine PGF is involved in luteal regression in the pig, the sensitivity of the CL to PGF may be more important than an increase in PGF secretion during the late luteal phase of the estrous cycle.  相似文献   

3.
Twenty-two goats were superovulated with PMSG; 84 h after the onset of estrus the goats were treated with saline solution (control group n = 7), hCG (hCG group, n = 7), or GnRH (GnRH group, n = 8). The ovaries of all the goats were laparoscopically examined 3 and 6 d after the onset of estrus. In each case the CL were counted and classified according to their appearance as normal-looking or as regressing. Blood samples for progesterone determination were collected every 12 h from Day 1 to Day 6. Premature luteal regression was considered to have occurred if progesterone concentrations declined to less than 1 ng/mL by Day 6. According to progesterone concentrations, 57.5, 0 and 37.5% of the goats underwent premature luteal regression in the control, hCG and GnRH groups, respectively. Progesterone concentrations were higher in the hCG group than in the other groups on Days 5 and 6 post estrus (P < 0.05). The control group was the only one in which there was a significant (P < 0.05) increase in the number of regressing CL between Day 3 (1.6 +/- 1.4) and Day 6 (7.3 +/- 1.4). It was also the only group in which there was a significant decrease in the number of normal-looking CL between Day 3 (12.6 +/- 2.1) and Day 6 (2.6 +/- 2.1). On Day 6 the animals treated with hCG had significantly more normal-looking CL (12.0 +/- 2.3) than those in the control group (2.6 +/- 2.1). The number of large follicles present on the ovaries on Day 6 post estrus had negative correlations with progesterone concentrations (P = 0.05) and with the number of normal-looking CL (P < 0.05). It is concluded that the administration of hCG 84 h after the onset of estrus prevents premature luteal regression in goats superovulated with PMSG.  相似文献   

4.
There is great variability between animals in the number of viable embryos produced following different superovulation regimens. It is not clear if all the follicles that ovulate produce healthy oocytes and form normal corpora lutea (CL) following superovulation. The objective of this study was to assess and compare CL from heifers undergoing three superovulatory regimes with CL from unstimulated heifers on the basis of morphology and morphometric analysis of luteal cells.Beef heifers were superovulated using either: (a) 24 mg porcine follicle stimulating hormone (pFSH) given twice daily over a 4 day period in decreasing doses commencing on day 10 of the oestrous cycle; (b) a single injection of 2000 IU pregnant mare serum gonadotrophin (PMSG) given on day 10 of the cycle; (c) as in (b) but followed by 2000 IU anti-PMSG (IgG to neutralise endogenous PMSG) at the time of the first insemination which was 12–18 h after the onset of oestrus (n = 33 per treatment). Luteolysis was induced 48 h after initial gonadotrophin administration and CL were collected on day 7 of the subsequent cycle and from ten unstimulated heifers (controls) at the same stage of the oestrous cycle. CL morphology was studied at light and electron microscopy levels. Morphometric analysis was performed on luteal cells. Subcellular morphology was similar in heifers from all groups. However, CL from superovulated heifers had more connective tissue than CL from control heifers; the connective tissue content of CL in the anti-PMSG-treated group was particularly marked. Both large and small luteal cells in the heifers receiving anti-PMSG had significantly smaller (P < 0.001) area and sphere volume than similar cells from CL of heifers in the other groups.  相似文献   

5.
The effects of Cloprostenol administration on porcine luteal lipid and arachidonic acid accumulation were examined in relation to luteal in vitro progesterone and prostaglandin F synthesis in 18 mature gilts at day 12 of the estrous cycle. Basal and net in vitro release of progesterone from luteal tissue was depressed at 8 hr after treatment whereas net in vitro release of prostaglandin F was elevated at 8 hr. Inclusion of copper dithiothreitol or reduced glutathione in the incubation media resulted in minor alterations of in vitro release of progesterone and prostaglandin F and no changes in composition of luteal lipids or fatty acids. Luteal contents of triglyceride had increased by 8 hr after treatment whereas contents of free and esterified cholesterols had increased by 32 hr after Cloprostenol administration. Luteal contents of phospholipid and free fatty acids were not affected by Cloprostenol administration. At 32 hr after treatment, percentages and content of arachidonic acid had increased in luteal cholesterol esters and triglycerides. Although arachidonic acid percentages increased in luteal free fatty acids and phospholipids, calculated arachidonic acid contents did not change following Cloprostenol administration. Induced luteal regression was associated with decreased in vitro progesterone release, increased in vitro prostaglandin F release, and accelerated lipid and arachidonic acid accumulation within the corpus luteum. The effects of altered lipid metabolism on release of prostaglandin F could not be defined. However, availability of arachidonic acid did not appear to be rate-limiting in relation to luteal in vitro prostaglandin F synthesis.  相似文献   

6.
In view of the pulsatile nature of PGF secretion from the ovine uterus at the time of luteolysis, experiments were designed to examine the effect of pulsed infusions of PGF on luteal function and to re-examine the minimal effective levels of PGF required to induce luteolysis. To mimic physiological conditions, hour-long infusions of PGF in increasing concentrations were given either 4 times in 19 h or 5 times in 25 h into the arterial supply of the autotransplanted ovary in conscious sheep on day 12 of an induced cycle. Blood flow and progesterone secretion rate from the ovary were used to monitor directly the luteolytic effect of administered PGF. The concentration of LH in peripheral plasma was measured throughout each infusion experiment and the presence of a preovulatory peak of LH was used as an indicator of the permanence of luteal regression. Four pulses of PGF in 19 h caused complete corpus luteum regression in only 1 of 4 animals whereas the addition of a fifth pulse (5 pulses in 25 h) caused permanent regression in 4 out of 4 animals. Infusion of 5 hour-long pulses of saline or PGF at a rate of <0.04 μg/h did not induce permanent suppression of progesterone secretion. The average total effective dose of PGF required to induced luteal regression when given as 5 pulses was 1/40th of the amount currently regarded as the minimal effective one when given by constant infusion into the ovarian artery. In another series of experiments the luteolytic effect of a single hour-long pulse of 0.1 μg/h PGF given daily for either 3 or 4 days was investigated. A significant fall (ANOVA, F0.01) in progesterone secretion rate, which reached a nadir at 5.3 ± 2.2 h (x ± S.D., n=15), was followed by a recovery of progesterone secretion rate. Permanent luteal regression did not occur with this protracted regimen, suggesting that a relatively short pulse frequency of PGF over a minimal period of 24 h is a necessary condition for physiological regression of the corpus luteum in sheep.  相似文献   

7.
The aim of the present study was to determine the effect of fluorogestone acetate (FGA) administered after mating, on embryo production in the dairy goat subjected to conventional superovulatory and embryo recovery protocols. Adult does, most of them of the French Alpine breed, were randomly assigned after a FSH-superovulatory estrus and fertile matings to a control group (n=20) or to a treated group (n=20) in which intravaginal sponges impregnated with FGA were inserted after mating and remove before embryo collection (day 6). Blood samples were collected every 12h from days 1 to 7 post-estrus and serum progesterone concentrations were determined. The FGA-group had a lesser percentage of does with normal corpora lutea (CL) and a greater percentage of animals with CL in regression or mixed (normal and in regression) when compared with the control group (13.3 and 64.7%, 53.3 and 23.5%, and 33.3 and 11.8%, respectively; P<0.05). Mean number of normal CL per doe was less and mean number of regressed CL greater in FGA as compared with the control group (4.2 compared with 10.7 and 8.5 compared with 3.6, respectively; P<0.05). There were no differences (P>0.05) in recovery rate, total number of CL, total recovered structures, oocytes and transferable and non-transferable embryos between groups. Serum progesterone concentrations from day 5 to 7 post-estrus were lower (P<0.05) in FGA as compared with the control group. Percentage of does with luteal failure on day 6 post-estrus was greater in FGA as compared with the control group (86.6 compared with 33.3%; P<0.01). When considering only does with luteal failure on day 6 post-estrus, mean total recovered structures, transferable embryos and percentage of does rendering > or =3 transferable embryos were greater in the FGA compared with the control group (6.3 and 1.3 structures, 4.5 and 1.2 embryos, 67 and 17%, respectively; P<0.05). In does not having luteal failure, FGA administration did not appear to affect embryo production or embryo survival. These results indicate that FGA administration after mating improves embryo recovery in dairy goats with luteal failure after superovulatory treatment. However, it also increases the incidence of luteal regression when administered early in the estrous cycle.  相似文献   

8.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

9.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

10.
Corpus luteum function in the cycling and the pregnant rhesus monkey (Macaca mulatta) was evaluated through short term in vitro studies of progesterone production by suspensions of collagenase-dispersed luteal cells in the presence and absence of exogenous gonadotropin (human chortonic gonadotropin, HCG). Cells from mid-luteal phase of the menstrual cycle secreted progesterone, as measured by accumulation of this hormone in the incubation medium, and responded to the addition of 100 ng HCG/ml with a marked increase in progesterone secretion above basal level (63.7 ± 13.1 versus 24.7 ± 5.5 ng progesterone/ml/5 × 104cells/ 3 hr, X ± S.E., n = 6; p < 0.05). However, luteal cells from early pregnancy (23–26 days after fertilization) secreted significantly less progesterone than cells of the non-fertile menstrual cycle (3.6 ± 2.4 versus 24.7 ± 5.5 ng/ml/5 × 104 cells/3 hr, n = 3; p < 0.05) and did not respond to HCG with enhanced secretion. By mid-pregnancy (108–118 days gestation) luteal cells exhibited partially renewed function, and near the time of parturition (163–166 days gestation) basal and HCG-stimulated progesterone secretion (30.2 ± 5.6 and 63.0 ± 13.0 ng/ml/5 × 104 cells/3 hr, respectively; n = 3) was equivalent to that of cells from the luteal phase of the non-fertile menstrual cycle. The data suggest that following a period around the fourth week of gestation, when steroidogenic activity is markedly diminished, the corpus luteum of pregnancy progressively reacquires its functional capacity and at term exhibits gonadotropin-sensitive steroidogenesis similar to that of the corpus luteum of the menstrual cycle.  相似文献   

11.
Injections of 1 mg PGI2 directly into the bovine corpus luteum significantly increased peripheral plasma progesterone concentrations within 5 min. Concentrations were higher in the PGI2-treated heifers than in saline-injected controls between 5 and 150 min and at 3.5, 4, 5, and 7 h post-treatment. Levels tended to remain elevated through 14 h. Saline and 6-keto-PGF were without effect on plasma progesterone levels. The luteotrophic effect of PGI2 was not due to alterations in circulating LH concentrations. An in vitro experiment assessed the effects of either PGI2 alone or in combination with LH on progesterone production by dispersed luteal cells. Progesterone accumulation over 2 h for control, 5 ng LH, 1 μg PGI2, 10 μg PGI2, and 10 μg PGI2 plus 5 ng LH averaged 99 ± 42, 353 ± 70, 152 ± 35, 252 ± 45, and 287 ± 66 ng/ml (n=4), respectively. Thus PGI2 has luteotrophic effects on the bovine CL both in vivo and in vitro.  相似文献   

12.
Prostaglandin F2α (PGF2α) release invitro by luteal tissue from mares was quantified to determine if exogenous prostaglandin analog increased endogenous luteal PGF2α production during induced luteolysis. On day 8 after ovulation, luteal tissue was collected by flank laparotomy and endometrium was collected by uterine biopsy. Mares were assigned to one of four treatments: (1) no intramuscular injection at 0-hr (n = 5), (2) 250 μg Fluprostenol (ICI 81008 PGF2α analog) at 4-hr (n = 4), (3) 250 μg Fluprostenol at 12-hr (n = 5), or (4) 250 μg Fluprostenol at 28-hr (n = 5) prior to tissue collection at laparotomy. Blood was collected from a jugular vein at laparotomy. Luteal and endometrial tissues (100-mg minces) were incubated in duplicate in 5 ml of Krebs-Ringer bicarbonate buffer (pH 7.4) in an ice bath in an air atmosphere or at 37°C in an atmosphere of 95% O2:5% CO2. The incubation treatments consisted of: no treatment, indomethacin 1.3 × 10?4M, 1 μg/ml of arachidonic acid, 10 μg/ml of Fluprostenol, and 100 μM dbc-AMP (Fluprostenol was not added to endometrial tissue incubations). The injection of Fluprostenol induced luteolysis in these mares as indicated by decreased plasma progesterone and luteal tissue progesterone production (P<0.01). Luteal PGF2α production was only detectable in tissue from mares that had been injected with Fluprostenol; production reached a maximum by 12 hr post-injection and had returned to pre-treatment levels by 28 hr (P<0.01). Endometrial tissue produced PGF2α, but this activity was not significantly affected by injection of mares with Fluprostenol. Increased production of PGF2α by luteal tissue of mares during PGF2α analog induced luteolysis was similar to that observed in the pig and ewe.  相似文献   

13.
Ewes are commonly superovulated with a single dose of eCG or multiple doses of pFSH. It would be convenient and less expensive to use a single dose of FSH, but results of various trials have been controversial. We wished to investigate ovarian dynamics using ultrasonography after superovulation with a single dose of pFSH and hMG as compared with a single dose of eCG. Estrus was synchronized during the breeding season with fluorogestone acetate-containing intravaginal sponges in adult German Merino ewes (n = 38). They were superovulated with single doses of pFSH (17 mg; n = 10), hMG (600 IU FSH and 600 IU LH; n = 9) or eCG (1250 IU; n = 10) given at the time of sponge removal, or pFSH (17 mg; n = 9) given 36h before sponge removal. Follicular and luteal development were observed by ultrasonic scanning every 8 h from the gonadotrophin injection until the end of estrus, and then once daily until Day 6 after estrus. Jugular venous blood was collected starting immediately before and 1 h after superovulation treatment, then twice daily until the end of estrus and once daily for the following 7 days. Concentrations of estradiol-17beta (E2) and progesterone (P4) were measured in plasma. Differences in the follicular dynamics of the 4 superovulation groups were obvious. The functional duration of the pFSH action was estimated to last approximately 48 h, whereas eCG and hMG were active for up to 72 h. The diameter of the ovulatory follicles proved to be smaller than it was described for unstimulated ewes. Single applications of pFSH or hMG can induce a superovulatory response, although the post-estrus progesterone profile revealed a high premature luteal regression rate in the different superovulation groups. Premature corpus luteum regression could not be seen by ultrasonography at this early stage of the luteal phase, indicating that the technique may fail to detect these corpora lutea in an embryo transfer program. However, ultrasonography represents a suitable method to observe follicular dynamics following different superovulation regimens in sheep.  相似文献   

14.
Ovulation was induced by rams in 74 of 91 seasonally anovular Merino ewes. The resulting corpora lutea (CL) were observed by laparoscopy and were found to either persist normally (3874), or regress prematurely (3674). In 32 of the latter ewes premature regression of the CL was followed by a second ovulation within 6 days of the introduction of rams.  相似文献   

15.
Changes in serum luteinizing hormone (LH) and progesterone concentrations, number of luteal unoccupied LH receptors, receptor affinity constants, luteal weights and luteal progesterone concentrations were determined during the postovulatory period in the mare. The number of unoccupied LH receptors and receptor affinity was less during the early (Days 1-4) and late [Day 15 through 3rd day after start of corpus luteum (CL) regression] luteal phases than during the mid-luteal (Days 9-14) phase of the postovulatory period (P less than 0.01). The number of LH receptors per CL increased 21-fold (P less than 0.001) from Day 1 to Day 14. Receptor affinity increased 5-fold (P less than 0.001) from Day 1 to Day 13. Receptor number was highly correlated with receptor affinity (P less than 0.01) and both were highly correlated with serum and luteal progesterone (P less than 0.01). During regression of the CL, the number of LH receptors and receptor affinity decreased concomitantly with serum and luteal progesterone. Morphologically, luteal cell development and degeneration correlated with the change in receptor numbers, affinity constants and luteal and serum progesterone concentrations. Receptor number and affinity, luteal weight and serum and luteal progesterone concentrations did not differ between the CL from multiple ovulations. Random variations in the data observed between CL from multiple and single ovulations suggested that CL from the two groups were not different in structure and function. In summary, the above results suggest that major factors in regulation of progesterone secretion and maintenance of the equine CL are changes in the number of LH receptors and the affinity constants throughout the postovulatory period.  相似文献   

16.
S.A. Sholl  R.C. Wolf 《Steroids》1980,36(2):209-218
For the purpose of describing the pathway by which estrogens are synthesized in the rhesus monkey (Macacamulatta) corpus luteum (CL), CL were obtained during the midluteal phase of the menstrual cycle and fragments incubated with equimolar amounts of [7-3H]pregnenolone plus [4-14C]progesterone. Metabolites including 3H-progesterone, 3H, 14C-20α-dihydroprogesterone, 3H, 14C-17-hydroxyprogesterone, 3H-estrone and 3H-estradiol-17β appeared in the medium during the first 20 minutes of incubation, 3H, 14C-Androstenedione was not consistently noted until after 60 minutes. Despite the fact that the 14C/3H-17-hydroxyprogesterone ratio quickly approached a constant value in the medium, 14C-estrogens were not detected in the medium or tissue fragments suggesting that progesterone was not a principal precursor for estrogen synthesis. As evidenced by the observation that the 14C/3H-progesterone ratio was significantly higher in luteal fragments than the 17-hydroxyprogesterone ratio, 17-hydroxyprogesterone appeared to be synthesized from pregnenolone both by way of progesterone and by another route which did not include progesterone. C21- and C18-Steroids were more concentrated in tissue fragments after 120 minutes of incubation than in the medium indicating that these steroids were sequestered by luteal tissue.  相似文献   

17.
Quantitative echotexture analysis of bovine corpora lutea   总被引:5,自引:0,他引:5  
Tom JW  Pierson RA  Adams GP 《Theriogenology》1998,49(7):1345-1352
A study was designed to evaluate the attributes of ultrasound images of bovine ovarian CL throughout the estrous cycle. The ovaries of 8 heifers were examined daily by transrectal ultrasonography for 2 interovulatory intervals (ovulation = Day 0). Ultrasonographic examinations of the ovaries were videotaped daily, and recorded images of the CL were digitized for computer analysis of echotexture (mean pixel value and heterogeneity). Blood samples were taken daily and to determine plasma progesterone concentrations. Corpora lutea were of 2 morphological types, those with a central fluid-filled cavity (n = 6) and those without (n = 9). No differences were detected between CL with or without a fluid-filled cavity; therefore, data were combined. Mean pixel values of ultrasound images of the CL changed (P = 0.0001) during the interovulatory interval; values decreased (P < 0.05) from Day 0 to Day 3 during early growth of the CL, reached a plateau when increases in luteal diameter ceased, and decreased (P < 0.05) to minimal levels at the onset of regression of the CL. The mean pixel value subsequently increased (P < 0.05) after Day 17 to values similar to those at the beginning of the interovulatory interval. A time-dependent effect was not observed for heterogeneity of images of the CL (P > 0.5). The results supported the hypothesis that quantitative changes in luteal echotexture are reflective of changes in the physiologic status of the CL.  相似文献   

18.
To examine the factor affecting LH-induced progesterone production invitro in ovine luteal slices, an experimental procedure was employed wherein each slice served as its own control. The role of microfilaments in steroidogenesis was studied in luteal slices treated with cytochalasin B (an inhibitor of microfilament function). Cytochalasin B treatment resulted in significant reduction of progesterone production by luteal slices in response to LH and the addition of serum to the medium did not alter this effect. The ability of luteal slices to respond to LH with increased progesterone secretion was restored when cytochalasin B was removed from the medium. Further studies indicated that inhibition of LH-induced progesterone production by treatment with cytochalasin B was not a result of a change in: 1) cyclic adenosine 3'-5'-monophosphate production in response to LH; 2) mitochondrial membrane permeability to cholesterol; or 3) activity of 3β-hydroxysteroid dehydrogenase, Δ54-isomerase enzyme complex.The possibility existed that microfilaments were necessary for cholesterol transport to mitochondria in response to LH stimulation. However, mitochondrial cholesterol content was unchanged in response to LH in the presence or absence of aminoglutethimide (an inhibitor of cholesterol side-chain cleavage enzyme activity) as determined by uptake of 3H-cholesterol or total content determined by gas-liguid chromatography. Further, treatment with cytochalasin B had no effect on mitochondrial cholesterol content. These results suggest a role for microfilaments in LH-induced progesterone production at a point prior to the conversion of cholesterol to pregnenolone.  相似文献   

19.
Progesterone (P(4)) and luteinizing hormone (LH) profiles were analyzed throughout the estrous cycle in 11 superovulated heifers that had follicular oocytes aspirated at different times after standing heat. It was found that high P(4) during estrus was incompatible with normal LH release, oocyte maturation and subsequent in vitro fertilizing capability. However, an LH peak was not a prerequisite for initiation of meiosis, since both metaphase I (MI) and metaphase II (MII) stages were observed in animals without an LH surge. Following follicular aspiration, the progesterone levels and the length of luteal phase were similar to those of superovulated animals that had no follicular intervention. We concluded that aspiration per se does not interfere with normal corpora lutea (CL) development in heifers when aspiration occurs after the LH surge.  相似文献   

20.
Nonlactating Holstein and Jersey cows (n = 24) were superovulated and ovarian follicular development was monitored by transrectal ultrasound during the period after embryo recovery. Luteolysis was induced by two injections of prostaglandin F(2)alpha (PGF; 25 mg Lutalyse; 12-h interval) at specific times after superovulatory induced estrus (Treatment 1, Day 9; Treatment 2, Day 12; Treatment 3, Day 17; Treatment 4, Day 25; superovulatory estrus = Day 0 of Cycle 1). Follicular development was monitored during Cycle 1 before and after PGF injection and continued through the ensuing estrous cycle (Cycle 2). Superovulation led to more than one embryo collected in 14 cows (mean = 8.71 embryos: positive superovulatory response [PSR] cows), while 10 cows were not successfully superovulated (mean = 0.1 embryo; negative superovulatory response [NSR] cows). These cows differed in terms of number of unovulated follicles detected at embryo collection (4.21 vs 17.2, PSR vs NSR) and plasma progesterone during the superovulatory estrous cycle (32.3 ng/ml PSR vs 8.6 ng/ml NSR). Follicular development during Cycle 1 started sooner in NSR than in PSR cows (day by class by response P<0.03) and was initiated on Days 11 to 12 in NSR cows and on Days 19 to 20 in PSR cows. Interval to estrus after PGF averaged 6.3 d. Cows having short intervals to estrus had follicles at the time of PGF injection. Treatment influenced the length of Cycle 1, but it did not affect the interval to estrus after PGF, the length of Cycle 2, or follicular development during Cycle 2. The results indicate that 1) the timing of PGF injection after embryo collection does not influence subsequent follicular populations, 2) elongated estrous cycles and intervals to estrus after PGF in superovulated cattle are a function of decreased follicular activity, and 3) the presence of numerous corpora lutea and not the superovulatory treatment, per se, seem to attenuate follicular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号