首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
Petr J  Míka J  Jílek F 《Theriogenology》1990,33(5):1151-1155
Superovulation was induced in 56 dairy cows to evaluate the effect of two different regimens using pregnant mare serum gonadotropin (PMSG). Thirty-two cows (controls) were superovulated between Days 9 and 12 of the estrous cycle with a single dose of PMSG (2 800 IU), while remaining 24 cows (PMSG-primed) received 200 IU of PMSG on Day 4 of the estrous cycle and subsequently a single dose of PMSG (2 800 IU) between Days 8 and 12. The cows in both treatments were each given 0,5 mg of cloprostenol at 48 h after the superovulatory PMSG treatment. They were then artifically inseminated twice, 48 h and 72 h later. Embryos were recovered at sloughter between Days 2 and 5 of the cycle and morphologically evaluated. The number of corpora lutea (CL) in the ovaries of the cows was recorded. The mean number of CL (7.2 vs 17.8) was significantly higher (P 0.01) for PMSG-primed cows. The percentage of recovered ova (60.5 vs 70.2 %) and good embryos (79.3 vs 70.7%) were not significantly different between groups. The percentage of fertilized ova (91.4 vs 83.8%) was significantly (P 0.025) greater for the controls. Results of the study indicate that PMSG-priming increased the ovulation rate in the cows superovulated with PMSG.  相似文献   

2.
The uteri of 34 heifers were flushed for ova six to nine days following estrus using a single cannula nonsurgical technique. The technique involved the infusion of fluid by gravity and agitation within the uterus by to-and-fro action of a syringe followed by unassisted fluid collection. Each horn was flushed five times using 30–150 ml of flushing fluid per flush. Recovered fluid (flushing fluid plus uterine secretion) was an average of 95% of the volume of the fluid inserted. Ova were recovered from 12 of 19 nontreated, single ovulating heifers (63%) and from all of 15 superovulated heifers (mean and S.D. for number of ova, 6.3 ± 4.4/ superovulated heifer; range, 1 to 14 ova). Based on the number of corpora lutea, the ova recovery index was 54% as averaged over the 15 superovulated heifers. The technique has been used in 4 additional superovulated heifers with modification (increased number of flushes to 8) subsequent to the termination of the planned project. Recovery index for the first 5 flushes was 58%. However, some ova were recovered in the 6th, 7th, and 8th flushes resulting in an apparent improved recovery index of 69%.  相似文献   

3.
On Day 3 of the estrous cycle (estrus = Day 0), dairy heifers were given either 10 mg i.m. FSH-P (FSH-P primed; n = 9) or a saline vehicle (saline primed; n = 9). On Day 10, all heifers were superovulated with FSH-P (total = 27.7 mg i.m.) in declining doses over 5 d. Heifers were inseminated artificially at estrus. From Day 2 until estrus, the number and size of follicles >2 mm were monitored daily by ultrasonography. The mean (+/- SEM) number of corpora lutea (CL) (6.2 +/- 1.5 vs 10.7 +/- 0.9; P<0.05) and the mean number of recovered embryos and unfertilized ova (3.6 +/- 1.7 vs 8.4 +/- 2.2; P<0.05) were lower in FSH-P-primed than in saline-primed heifers. Prior to initiation of superovulation, follicles >10 mm appeared on Days 6 to 7 in saline-primed heifers but only on Days 8 to 10 in FSH-P-primed heifers (P<0.05). Also, until Day 10, the mean number of follicles 4 to 6 mm and 7 to 10 mm was higher (P<0.05) in FSH-P-primed than in saline-primed heifers. After initiation of the superovulatory treatment (Day 10 to estrus), saline-primed heifers had a greater and faster increase in the mean number of follicles >10 mm (P<0.02) than FSH-P-primed heifers did. Depletion in the number of follicles 2 to 3 mm (P<0.001) between Day 10 and estrus and in the number of follicles 4 to 6 mm (P<0.05) between Day 12 and estrus occurred in both groups of heifers. Decreased superovulatory response and embryo recovery in FSH-P-primed heifers may have been due to the presence of large follicles (>10 mm) prior to the initiation of the superovulatory treatment which reduced the ability of small follicles to grow into larger size classes during superovulatory treatment.  相似文献   

4.
Mature female Chinese hamsters ovulate an average of 8.8 ± 1.0 (mean ± SD) eggs per female in each estrous cycle. Superovulation can be induced in both immature and mature females by subcutaneous or intraperitoneal injections of pregnant mare serum gonadotropin (PMSG) and either human chorionic gonadotropin (hCG) or pituitary luteinizing hormone (PLH). The best superovulation in immature females was induced by the administration of 15 IU of PMSG followed 72 hr later by injection of 15 IU of hCG (about 25 eggs per female) or 0.2 mg (200 IU) PLH (about 46 eggs per female). Ovulation started about 13–15 hr after administration of hCG (or PLH) and was completed during the next 5–6 hr. Superovulation in mature females could be induced by injecting PMSG any day of the estrous cycle, but the best superovulation (about 39 eggs per female) was induced by injecting 15 IU of PMSG on day 1 (day of ovulation) followed by the injection of 0.4 mg of PLH 72 hr later. When immature females treated with the best superovulatory protocol were mated on the evening of PLH injection, only 5% of the eggs were found fertilized 50 hr after PLH administration. On the other hand, about 60% of the eggs were found fertilized in mature females mated following treatment with the best superovulatory protocol. The majority (83–85%) of superovulated eggs obtained from both immature and mature females were normally fertilized in vitro.  相似文献   

5.
The aim of this study was two-fold: (1). to compare recovery of embryos/ova from superovulated Holstein heifers by flushing the uterine horns through insertion of the catheter very close to the tip of the horn (deep) or just after the uterine bifurcation (shallow) and (2). to evaluate the hormonal and superovulatory response to estradiol benzoate (EB) treatment prior to superovulation. Ten Holstein heifers (12-16 months) underwent two superovulatory treatments in a cross-over design. Heifers were treated with decreasing doses of FSH from Days 8 to 12.5 of a synchronized estrous cycle. At 4 days prior to superovulation, half of the heifers received EB (5mg, i.m.) or served as Controls, followed by the alternative treatment in the subsequent superovulation. At embryo recovery, one uterine horn was flushed with deep ( approximately 7 cm caudal to the tip of the horn) and the other with shallow ( approximately 5 cm cranial to the beginning of the uterine bifurcation) flushing techniques. Embryos/ova were recovered, counted, and scored. Number of ovulations was estimated by ultrasound. Pretreatment with EB reduced circulating FSH and regressed the first wave dominant follicle with no change in number of large follicles, number of ovulations, number of embryos/ova recovered, or number of transferable embryos. The shallow flushing technique was superior to the deep technique for number of embryos/ova recovered per horn (5.4+/-1.1 versus 3.9+/-0.8) or percentage of embryos/ova recovered per CL (63.9+/-8.6% versus 37.4+/-6.5%). Thus, flushing the entire uterine horn increased recovery of embryos/ova.  相似文献   

6.
Possibilities for early characterization of the superovulatory response were studied in 41 PMSG/PG-treated dairy heifers, of which 21 received an additional treatment of PMSG-antiserum. Plasma was obtained at 33, 36, 41, 47 and 51 h after PG for hormone analyses. After slaughter at 6 or 7 d after insemination, the number of follicles and corpora lutea (CL) were recorded, and ova were recovered for morphological evaluation. Significant correlations were demonstrated between plasma concentrations of estradiol-17beta (E2) at 33, 36 and 41 h after PG and the ovulation rate (number of CL). Each of these correlations was equal to the one found by using the peak concentration of E2 achieved during the preovulatory E2 surge. In heifers with preovulatory E2 surges, as determined with the blood sampling scheme used, both the ovarian response (number of CL and follicles) and the quality of ova recovered (number of transferable embryos) was clearly better compared to heifers without this surge. None of the parameters studied was affected significantly by treatment with PMSG-antiserum. It is concluded that plasma E2 determinations at fixed times in relation to prostaglandin treatment can be used to characterize the superovulatory response in donor cattle in terms of the ovulation rate and the quality of ova recovered. No evidence was found in favor of using PMSG-antiserum for improving either the superovulatory response or such characterization.  相似文献   

7.
The ovarian response of 25 buffalo-cows was visually assessed, and their oviducts and uteri separately flushed 3 to 6 d post superovulatory estrus at slaughter. Ten buffalo-cows slaughtered on Days 5 and 6 were examined per rectum for corpora lutea (CL) and follicles > 8 mm prior to slaughter, and the estimate was compared later with the actual ovarian response. Five out of the ten buffalo-cows were nonsurgically flushed in vivo on Day 5 of the estrous cycle, a day before slaughtering, and as a result, six ova/embryos were recovered. After the flushing of the reproductive tract at slaughter, one more ovum was recovered from the uterus of each of the three buffalo-cows. As a result of treatment of three groups of five buffalo with 3000 IU pregnant mare serum gonadotrophin (PMSG) on Days 6, 10 or 14 of the estrous cycle, 3.8, 6.2 and 3.4 CL on the average were recovered, respectively (Experiment I). A mean number of 8.8 and 9.0 CL, respectively, was obtained in two groups of five buffalo each, after treatment with 40 mg of follicle stimulating hormone (FSH) on Day 10 of the stage of the estrous cycle (Experiment II) and 3000 IU PMSG regardless of the stage of cycle (Experiment III). The percentage of ova/embryos recovered in the three experiments was 32.8, 20.4 and 22.2, respectively.  相似文献   

8.
The ovarian cycles of 160 beef heifers were controlled with two injections of PGF and superovulation was induced by 2000 IU PMSG, administered 48 h prior to the second PGF treatment. Heifers were inseminated with fresh or frozen semen from selected bulls that demonstrated consistent NR's above (n=5) or below (n=3) the stud average. Sixty-five percent of ovulated ova were recovered from the responding heifers. The mean fertilization rates for the above and below average fertility groups in this study were 89.0% (355 ova) and 69.7% (155 ova) respectively. This pilot study indicated the possibility of detecting differences in the fertilization rate between bulls using superovulated females to obtain large quantities of ova from relatively few experimental animals. Further research with more bulls would be required to accurately determine the correlation between fertilization rate and nonreturn rate but the results suggest the procedure may have application for selection of potential AI sires with above average fertility.  相似文献   

9.
This study was conducted to compare the superovulatory (SOV) response of dairy cows (n=172) and heifers (n=172), with two SOV treatments started at the mid-luteal-phase of the estrus cycle. Donors were randomly treated either with equine chorionic gonadotrophin (eCG) plus neutra-eCG serum (eCG+N group, n=167) or follicle stimulating gonadotrophin (FSH-P group, n=177).No significant differences were observed among groups in the percentage of superovulatory responsive donors (SR donors; corpora lutea (CL) >/=2), the mean number of total ova, fertilized ova and viable embryos recovered. Cows yielded significantly less total ova and less fertilized ova (P<0.05) and tended to yield less viable embryos (P<0.06) than heifers.Plasma progesterone (P4) concentrations (n=135 donors) on the day of PGF(2alpha) (PGF) injection and on the day of SOV estrus were significantly higher (P<0.01) in eCG+N than in FSH-P donors and, the increase between those 2 days was also significantly higher (P<0.05) in group eCG+N than in group FSH-P, suggesting a higher luteotrophic effect of eCG than FSH-P. SR donors had P4 levels significantly higher (P<0.001) than non-SR donors only on day 5 after the SOV estrus and on the day of embryo recovery. Plasma P4 concentrations at 5 days after the SOV estrus and at embryo recovery correlated significantly (r=0.76, P<0.001).Heifers had significantly higher P4 levels than cows at gonadotrophin injection (P<0.01), PGF injection (P<0.001), 5 days (P<0.01) and 7 days (P<0.001) after the SOV estrus. At day 7 after the SOV estrus, P4 concentrations per ova recovered were significantly higher in heifers than in cows (P<0.01). The increase of plasma P4 per ova recovered, between days 5 and 7 after the SOV estrus, was significantly (P<0.01) higher in heifers than in cows. Also, the increase of plasma P4 between injections of gonadotrophin and PGF was significantly higher (P<0.05) in heifers than in cows.These results suggest that heifers have higher plasma P4 concentrations at diestrus (either before or after the SOV treatment) and this is associated with a higher embryo yield and quality, as compared to lactating cows. These higher plasma P4 concentrations reflect not only differences in ovulation rate as well as the competence of the corpus luteum, which is potentialized by gonadotrophin stimulation.  相似文献   

10.
The objective of this study was to evaluate the effectiveness of superovulatory protocols by synchronizing the emergence of the follicular wave using estradiol benzoate (EB) or GnRH in CIDR-treated, Korean cows. Sixty-six cows were used in the study and these were divided into three groups. The standard group comprised cows that were between days 8 and 12 of their estrous cycle (n=22). The remaining 44 cows, at all other stages of the estrous cycle, received CIDR and were assigned to two treatment groups that received either 2mg EB (EB-CIDR group, n=22) or 100 microg GnRH (GnRH-CIDR group, n=22) 1 day after CIDR insertion. Gonadotropin treatment began between the 8th and 12th days of the estrous cycle in the standard group, 5 days after EB injection in the EB-CIDR group, and 3 days after GnRH injection in the GnRH-CIDR group. All cows were superovulated with porcine FSH (pFSH) twice daily, with the dose (total 28 mg) decreasing gradually over 4 days. On the 5th and 6th injections of pFSH, 25 and 15 mg doses of PGF(2alpha) were administered. CIDR was withdrawn at the 7th pFSH injection and the cows received 200 microg GnRH at 24h after CIDR withdrawal. Cows were artificially inseminated twice at 36 and 48 h post-CIDR withdrawal and embryos were recovered 7 days after the 1st insemination. The numbers of preovulatory follicles (22.9-28.2), ovulated preovulatory follicles (17.6-21.7) and CL (15.9-17.9) detected by ultrasonography did not differ among groups (P>0.05). Similarly, the numbers of total ova (6.7-10.0), transferable embryos (4.0-6.0), degenerate embryos (1.1-1.8) and unfertilized ova (1.3-4.3) did not differ among groups (P>0.05). Progesterone and estradiol concentrations during superovulation treatments and at embryo recovery were also the same in all groups (P>0.05). We conclude that in CIDR-treated Korean native cows, superovulatory treatments that follow administration of either EB or GnRH (at any stage of the estrous cycle) result in both a superovulatory response and embryo yield comparable to conventional superovulation protocols.  相似文献   

11.
The optimum superovulatory dose of Folltropin was determined and compared with a standard 28 mg dose of FSH-P in beef heifers. In Experiment 1, mean numbers of corpora lutea (CL) did not differ among the groups treated with 10, 20, 30 or 40 mg Folltropin or FSH-P, and the mean CL number was reduced (P<0.05) only in the 5 mg Folltropin group. Mean numbers of ova/embryos recovered, fertilized and transferable were greater (P<0.05) for the 10, 20 and 30 mg Folltropin groups than for the 5 mg group. The 40 mg Folltropin group and the FSH-P group were intermediate. The percentage of fertilized and transferable embryos did not differ over the dosages used in this experiment. In Experiment 2, mean numbers of CL were greater for the 9, 18 and 36 mg Folltropin groups than for the 4.5 mg group, with the 9 mg group being lower than the 36 mg group (P<0.05). The 18 mg group was intermediate and did not differ. Mean numbers of ova/embryos recovered and fertilized ova were greater for the 9, 18 and 36 mg groups (P<0.05) than for the 4.5 mg group. The percent of fertilized and mean number and percentage of transferable embryos did not differ among treatments. We conclude that Folltropin may be a satisfactory superovulatory replacement for FSH-P and that a dose of 18 to 20 mg Folltropin may be within the optimum superovulatory dosage range for beef heifers. Dosages of Folltropin of more than twice the optimum did not result in deterioration of ova/embryo quality.  相似文献   

12.
There is great variability between animals in the number of viable embryos produced following different superovulation regimens. It is not clear if all the follicles that ovulate produce healthy oocytes and form normal corpora lutea (CL) following superovulation. The objective of this study was to assess and compare CL from heifers undergoing three superovulatory regimes with CL from unstimulated heifers on the basis of morphology and morphometric analysis of luteal cells.Beef heifers were superovulated using either: (a) 24 mg porcine follicle stimulating hormone (pFSH) given twice daily over a 4 day period in decreasing doses commencing on day 10 of the oestrous cycle; (b) a single injection of 2000 IU pregnant mare serum gonadotrophin (PMSG) given on day 10 of the cycle; (c) as in (b) but followed by 2000 IU anti-PMSG (IgG to neutralise endogenous PMSG) at the time of the first insemination which was 12–18 h after the onset of oestrus (n = 33 per treatment). Luteolysis was induced 48 h after initial gonadotrophin administration and CL were collected on day 7 of the subsequent cycle and from ten unstimulated heifers (controls) at the same stage of the oestrous cycle. CL morphology was studied at light and electron microscopy levels. Morphometric analysis was performed on luteal cells. Subcellular morphology was similar in heifers from all groups. However, CL from superovulated heifers had more connective tissue than CL from control heifers; the connective tissue content of CL in the anti-PMSG-treated group was particularly marked. Both large and small luteal cells in the heifers receiving anti-PMSG had significantly smaller (P < 0.001) area and sphere volume than similar cells from CL of heifers in the other groups.  相似文献   

13.
Sixty one (61) donor animals were inoculated with 500 I.U./100 kg body-weight of Pregnant Mare Serum Gonadotropin (PMSG) on days 9–14 of their oestrous cycle and given 25 mg PGF 48 hrs. later. The superovulatory response to the PMSG injection on different days were evaluated based on the number of corpora lutea (CL) present in both ovaries at the time of surgical ova collection 5 days after standing heat. The average number of CL's was 11,1. The highest number of CL's was observed when PMSG was injected on day 11 (12,5 ± 5,5) and the lowest following day 14 treatment (4,5 ± 3,2). No statistical difference was found between days 9–10–11, 12 and 13. The results suggest that a certain “day of injection variation” may exist and contribute to the umpredictability of PMSG treatments.  相似文献   

14.
Objective of the present study was to investigate the effect of season and dose of FSH on superovulatory responses in Iranian Bos indicus beef cattle (Sistani). Cyclic cows, in summer (n=16) and winter (n=16), were assigned randomly to three dose-treatment groups of 120 (n=10), 160 (n=12) and 200 (n=10) total mg of Folltropin-V with injections given twice daily for 4 days in decreasing doses. Estrous cycles were synchronized with two prostaglandin F2alpha injections given 14 days apart. From day 5 after the ensuing cycle, daily ovarian ultrasonography was conducted to determine emergence of the second follicular wave at which time superovulation was initiated. Relative humidity, environmental and rectal temperatures were measured at 08:00, 14:00 and 20:00 h for the 3 days before and 2 days after the estrus of superovulation. Non-surgical embryo recovery was performed on day 7 after estrus. The effects of season, dose, time of estrous expression and all two-way interactions were evaluated on superovulatory responses: total numbers of CL, unovulated follicles (10 mm), ova/embryo, transferable and non-transferable embryos. Season (summer or winter), doses of Folltropin-V (120, 160 or 200 mg NIH) and time of estrous expression (08:00, 14:00 or 20:00 h) did not affect the number of transferable embryos (3.1+/-0.58). When superovulatory estrus was detected at 08:00, a FSH dose effect was detected with the greatest numbers of CL (12.2+/-0.87) and total ova/embryos (12.2+/-1.46) occurring with 200 mg FSH (dosextime of estrous expression; P<0.01).  相似文献   

15.
A total of 47 superovulations were conducted on forty non-lactating cows to evaluate two different schemes using follicle stimulating hormone (FSH) for superovulating cattle. Cows randomly assigned to treatment A (26 collections) were superovulated beginning on days 9 to 13 of the estrous cycle by giving FSH at decreasing doses of 6, 6, 5, 5, 3, 3, and 2, 2 mg for 4 consecutive days at 12-h intervals while those in treatment B (21 collections) also received 2.5 mg of FSH on days 3 and 4 of the estrous cycle. Animals in both treatments were each given 12.5 mg of prostaglandin F(2alpha) (PGF(2alpha)) at 60 and 72 h after the initiation of superovulatory treatment. Cows were artificially inseminated at 0, 12, and 24 h after the onset of estrus. Embryos were recovered nonsurgically on d 6 and morphologically evaluated. Ovaries of the cows were palpated at the end of flushings to assess the number of corpora lutea (CL). The mean interval from PGF(2alpha) to the onset of estrus was not different (P>0.05) for treatments A (56.6 h) and B (50.0 h). Also, mean duration of standing estrus was not different for either treatment (13.4 h vs 12.8 h). The mean number of CL palpated (7.3 vs 12.9) and ova recovered (5.5 vs 14.2) were significantly greater (P<0.05) for treatment B. The mean number of excellent and good embryos recovered was lower for treatment A animals, but not significant (P>0.05). Therefore, low doses of FSH given at the beginning of the cycle increased ovulation rate and embryo recovery in non-lactating cows.  相似文献   

16.
The pathogenesis of reproductive loss associated with bovine pestivirus infection during the preovulatory period was investigated using superovulated heifers. Twenty-five Friesian heifers were selected and randomly assigned to either a control group (n = 12) which did not become infected or to a treatment group (n = 13) which became infected following intranasal instillation of 2 ml of serum inoculum containing 5.5 log(10) TCID(50)/ml non-cytopathic virus, 9 d prior to artificial insemination (AI). Transrectal ultrasonography was used to monitor follicular development and ovulation during the superovulatory period. Animals were superovulated using a standard protocol of twice-daily injections of FSH-P and then were inseminated twice commencing 12 h after the onset of estrus. The intensity of expression of estrus was higher in the control heifers than in the pestivirus-infected heifers. Of 13 pestivirus-infected heifers, only 3 heifers displayed standing estrus compared with that in the control group, in which 10 of 12 heifers exhibited standing estrus. The mean number of ova/embryos recovered from the control group heifers was 5.75 +/-2.31, of which 4.00 +/- 0.72 were evaluated as transferable quality embryos. In comparison, heifers in the pestivirus-infected group yielded only a mean of 0.60 +/-0.34 ova/embryos, of which 0.23 +/- 0.22 were transferable quality embryos. Based on ultrasonographic examination, 24 h after the first AI 82% of the presumptive ovulatory follicles had ovulated in the control group compared with an ovulation rate of only 17% in the treated group. The results of this experiment demonstrated that bovine pestivirus infection during the preovulatory period could adversely affect ovulation, thus leading to a significant reduction in the number of palpable corpora lutea and in the number and quality of embryos recovered.  相似文献   

17.
Follicle stimulating hormone (FSH) is a glycoprotein hormone with a short half-life and has to be given twice daily for 3-4 days to induce superovulation in heifers. Since such a regimen is time consuming we compared the ovulatory response and yield of embryos in heifers following superovulation with either once or twice daily injections of pFSH for 4 days during the mid-luteal phase of a synchronized estrous cycle or during a prolonged luteal phase in heifers which had been immunized against prostaglandin F2alpha (PG). In Experiment 1, crossbred heifers (n = 42) previously actively immunized against a PG immunogen were superovulated in a 2 (cyclic or persistent corpus luteum) x 2 (once or twice daily injection) factorial plan. The heifers were superovulated with 75 units pFSH, which was injected subcutaneously once (22.5, 22.5, 15 and 15 units per day) or twice daily (9.3 units per injection) for 4 days. In Experiment 2, cyclic crossbred beef heifers (n = 80) were superovulated using pFSH which was given randomly to heifers once daily subcutaneously (T1) or twice daily intramuscularly (T2) using the same daily dose of 9, 7, 5, and 3 mg per day. Estrus was induced in all heifers in both experiments using 500 mug and 250 mug Cloprostenol 12 hours apart on the third day of pFSH injections. All heifers were inseminated twice with frozen-thawed semen at 12 and 24 hours after the onset of standing estrus or at 56 and 72 hours after the first PG if estrus was not observed. Embryos were recovered at slaughter and graded on a scale of 1 to 5 (1 = excellent, 5 = degenerated). Data were recorded for the number of corpora lutea (CL), large (>/=10 mm) and medium (5-9 mm) follicles, number of embryos recovered and embryo morphology. Data were analyzed by least squares analysis of variance procedures. In Experiment 1, there was no difference in ovulation rate between main effects. Fewer embryos were recovered from heifers with a persistent corpus luteum (pCL) and injected once daily (1.71+/-.75 vs 5.75+/-1.27) than from any other group. Heifers with pCL yielded lower (P < 0.05) numbers of freezable embryos than cyclic animals, regardless of injection regimen. In Experiment 2, T2 heifers had a significantly higher number of CL (16.4+/-1.7 vs 7.7+/-1.7; P = 0.0003), large follicles (4.1+/-0.5 vs 2.8+/-0.5; P = 0.04), medium follicles (6.4+/-0.7 vs 4.4+/-0.7; P = 0.04), embryos recovered (9.6+/-1.1 vs 4.9+/-1.1; P = 0.0025) and freezable embryos (4.7+/-0.7 vs 2.1+/-0.7; P = 0.014) than T1 heifers. It is concluded that a single daily subcutaneous injection of pFSH results in a lower superovulatory response than the twice daily regimen in heifers.  相似文献   

18.
Immature rats (aged 28 days) were injected with 4, 20, or 40 IU pregnant mare serum gonadotropin (PMSG) and sacrificed every 6 or 12 hr. Control rats (4 IU) ovulated between 60 and 72 hr, whereas rats given superovulatory doses of PMSG (20 and 40 IU) ovulated between 24 and 72 hr. The oocyte count from the superovulated rats increased slightly between 24 and 36 hr and markedly between 48 and 72 hr. Degenerated oocytes were recovered 48 and 36 hr after administration of 20 and 40 IU PMSG, respectively. Thereafter, the proportion of degenerated oocytes was dose dependent and reached a maximum at 72 (30.9%, 20 IU) and 60 hr (61.0%, 40 IU). 17β-estradiol content of the superovulated ovaries increased significantly (P < 0.01) from 36 hr and was maximal at 60 (20 IU) or 54 hr (40 IU), when compared to the control regimen. Administration of 40 IU PMSG resulted in a biphasic increase of progesterone content with the peaks at 36 and 60 hr. Androgen content of the superovulated ovaries was lower than control levels during the first 36 hr but was significantly (P < 0.01) higher thereafter. The results suggest that these alterations in the steroid response (particularly androgens) from 36 hr onward following superovulation may be responsible for the coincidental occurrence of abnormal oocytes, possibly by disturbing the specific intrafollicular steroid environment essential for complete maturation. In addition, oocyte aging that is due to earlier activation by the exogenous luteinizing hormone activity may be a contributing factor.  相似文献   

19.
Forty crossbred beef heifers were superovulated with 2000 IU pregnant mare serum gonadotropin (PMSG) and mated twice by natural service during estrus. Ovulations were counted and ova were recovered during mid-ventral laparotomy between 44 and 54 h after the onset of estrus. The overall donor ovulation rate (M+/-SEM) was 15.2+/-1.3. There was a positive association between ovulation rate and the number of ova recovered (P<0.001), and between ovulation rate and the incidence of ova advanced beyond the two-cell stage of development (P<0.05). When grouped on the basis of superovulation response, the numbers (M+/-SEM) of recovered one-cell, two-cell and more advanced ova were 3.7+/-0.7, 1.0+/-0.3 and 0.5+/-0.3, respectively, for donors with up to 15 ovulations. The corresponding numbers for donors with more than 15 ovulations were 7.2+/-1.8, 6.0+/-1.3 and 2.8+/-1.2, respectively. Following centrifugation, pronuclei were visible in 68% of one-cell ova, and nuclei were visible in 80% of two-cell ova. Approximately 20% of ova were destroyed during DNA microinjection. A total of 66 centrifuged and DNA-injected ova were transferred to the oviducts of 26 crossbred beef heifers, each receiving two, three or four ova. Echography at Day 55 confirmed that 14 (54%) heifers were pregnant with 26 (39%) fetuses. Eleven heifers were held to calve and produced 21 calves.  相似文献   

20.
It has been suggested that superovulation in cattle is impaired if FSH injections are initiated in the presence of a dominant follicle, but the results of experiments to test this hypothesis have been contradictory. However, previous experiments were conducted during mid-cycle, when the absence or presence of a dominant follicle is difficult to assess. We took a different approach by comparing the effects of initiating superovulatory injections of FSH (11 equal doses of FSH-P, every 12 h) on Day 1 of the bovine estrous cycle, when a dominant follicle clearly is not present, vs initiation on Day 6, when a dominant follicle clearly is present and actively growing (n = 17 heifers in a "crossover" design). In 8 17 heifers initiation of FSH injections in the presence of a dominant follicle (Day 6 group) caused ovulation of the dominant follicle within 1 to 2 days and formation of a smaller than normal CL. These animals had higher than normal concentrations of plasma progesterone around the time of expected estrus (P < 0.05) and failed to exhibit estrus. Although the mean number and diameter of the follicles recruited in response to FSH injections in heifers that ovulated the dominant follicle prematurely were not different from the other heifers in the Day 6 group, no ovulations were observed, and no embryos or ova were recovered 6 d after insemination. Conversely, when FSH injections were initiated on Day 1 in these 8 heifers, they exhibited estrus, and their plasma progesterone around the time of estrus, mean ovulation rate, and number of total and transferable embryos recovered did not differ from the responses observed in the remaining 9 heifers treated either on Day 1 or on Day 6. Taken together, these results indicate that a dominant follicle does not affect the ability of smaller follicles to be recruited in response to exogenous FSH, but may impair their ovulation. These findings provide an explanation for previous reports of decreased superovulatory responses during times of the cycle when a dominant follicle would be expected to be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号