首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A trehalose-6-phosphate phosphatase (TPP) gene, otsB, from a psychrotrophic bacterium, Arthrobacter strain A3, was identified. The product of this otsB gene is 266 amino acids in length with a calculated molecular weight of 27,873 Da. The protein was expressed in Escherichia coli and purified to apparent homogeneity. The purified recombinant TPP catalyzed the dephosphorylation of trehalose-6-phosphate to form trehalose and showed a broad optimum pH range from 5.0 to 7.5. This enzyme also showed an absolute requirement for Mg(2+) or Co(2+) for catalytic activity. The recombinant TPP had a maximum activity at 30 °C and maintained activity over a temperature range of 4-30 °C. TPP was generally heat-labile, losing 70 % of its activity when subjected to heat treatment at 50 °C for 6 min. Kinetic analysis of the Arthrobacter strain A3 TPP showed ~tenfold lower K (m) values when compared with values derived from other bacterial TPP enzymes. The highest k (cat)/K (m) value was 37.5 mM(-1) s(-1) (repeated three times), which is much higher than values published for mesophilic E. coli TPP, indicating that the Arthrobacter strain A3 TPP possessed excellent catalytic activity at low temperatures. Accordingly, these characteristics suggest that the TPP from the Arthrobacter strain A3 is a new cold-adapted enzyme. In addition, this is the first report characterizing the enzymatic properties of a TPP from a psychrotrophic organism.  相似文献   

2.
As lymphatic filariasis (LF) programs move closer to established targets for validation elimination of LF as a public health problem, diagnostic tools capable of supporting the needs of the programs are critical for success. Known limitations of existing diagnostic tools make it challenging to have confidence that program endpoints have been achieved. In 2019, the World Health Organization (WHO) established a Diagnostic Technical Advisory Group (DTAG) for Neglected Tropical Diseases tasked with prioritizing diagnostic needs including defining use-cases and target product profiles (TPPs) for needed tools. Subsequently, disease-specific DTAG subgroups, including one focused on LF, were established to develop TPPs and use-case analyses to be used by product developers. Here, we describe the development of two priority TPPs for LF diagnostics needed for making decisions for stopping mass drug administration (MDA) of a triple drug regimen and surveillance. Utilizing the WHO core TPP development process as the framework, the LF subgroup convened to discuss and determine attributes required for each use case. TPPs considered the following parameters: product use, design, performance, product configuration and cost, and access and equity. Version 1.0 TPPs for two use cases were published by WHO on 12 March 2021 within the WHO Global Observatory on Health Research and Development. A common TPP characteristic that emerged in both use cases was the need to identify new biomarkers that would allow for greater precision in program delivery. As LF diagnostic tests are rarely used for individual clinical diagnosis, it became apparent that reliance on population-based surveys for decision making requires consideration of test performance in the context of such surveys. In low prevalence settings, the number of false positive test results may lead to unnecessary continuation or resumption of MDA, thus wasting valuable resources and time. Therefore, highly specific diagnostic tools are paramount when used to measure low thresholds. The TPP process brought to the forefront the importance of linking use case, program platform and diagnostic performance characteristics when defining required criteria for diagnostic tools.  相似文献   

3.
Telomerase contributes to chromosome end replication by synthesizing repeats of telomeric DNA, and the telomeric DNA‐binding proteins protection of telomeres (POT1) and TPP1 synergistically increase its repeat addition processivity. To understand the mechanism of increased processivity, we measured the effect of POT1–TPP1 on individual steps in the telomerase reaction cycle. Under conditions where telomerase was actively synthesizing DNA, POT1–TPP1 bound to the primer decreased primer dissociation rate. In addition, POT1–TPP1 increased the translocation efficiency. A template‐mutant telomerase that synthesizes DNA that cannot be bound by POT1–TPP1 exhibited increased processivity only when the primer contained at least one POT1–TPP1‐binding site, so a single POT1–TPP1–DNA interaction is necessary and sufficient for stimulating processivity. The POT1–TPP1 effect is specific, as another single‐stranded DNA‐binding protein, gp32, cannot substitute. POT1–TPP1 increased processivity even when substoichiometric relative to the DNA, providing evidence for a recruitment function. These results support a model in which POT1–TPP1 enhances telomerase processivity in a manner markedly different from the sliding clamps used by DNA polymerases.  相似文献   

4.
The preparation of sterile parenteral products requires careful control of all ingredients, materials, and processes to ensure the final product has the identity and strength, and meets the quality and purity characteristics that it purports to possess. Contamination affecting these critical properties of parenteral products can occur in many ways and from many sources. The use of closures supplied by manufacturers in a ready-to-use state can be an effective method for reducing the risk of contamination and improving the quality of the drug product. This article will address contamination attributable to elastomeric container closure components and the regulatory requirements associated with container closure systems. Possible contaminants, including microorganisms, endotoxins, and chemicals, along with the methods by which these contaminants can enter the product will be reviewed. Such methods include inappropriate material selection, improper closure preparation processes, compromised container closure integrity, degradation of closures, and leaching of compounds from the closures.  相似文献   

5.
The following commentary was developed by the National Marrow Donor Program Cord Blood Advisory Group and is intended to provide an overview of umbilical cord blood (UCB) processing, summarize the current state of potency assays used to characterize UCB, and define limitations of the assays and future needs of the cord blood banking and transplant community. The UCB banking industry is eager to participate in the development of standardized assays to uniformly characterize cellular therapy products that are manufactured in a variety of ways. This paper describes the desired qualities of these assays and how the industry proposes to co-operate with developers to bring relevant assays to market. To that end, the National Marrow Donor Program (NMDP) Cord Blood Bank Network is available to serve as a resource for UCB testing material, research and development consulting, and product/assay testing in an accredited UCB manufacturing environment.  相似文献   

6.
A Limulus amoebocyte lysate gel-clotting method for the determination of endotoxin in a small-volume parenteral product has been described. Sample dilution with 0.1 M potassium phosphate monobasic buffer (pH 8.0) effectively eliminated assay interference, whereas dilution with water did not. The threshold pyrogenic dose for Escherichia coli EC-2 and O127:B8 endotoxins was determined to be 1.0 ng of endotoxin per kg of body weight. Not more than 1.0 ng of endotoxin (the threshold pyrogenic dose) per the highest recommended human dose or the USP pyrogen test dose per kg of body weight, whichever dose is more stringent, is a logical limit for the quantity of bacterial endotoxin in small-volume parenteral products. Excellent correlation was attained when this criterion was used to compare the Limulus amoebocyte lysate assay with the USP pyrogen test.  相似文献   

7.
A Limulus amoebocyte lysate gel-clotting method for the determination of endotoxin in a small-volume parenteral product has been described. Sample dilution with 0.1 M potassium phosphate monobasic buffer (pH 8.0) effectively eliminated assay interference, whereas dilution with water did not. The threshold pyrogenic dose for Escherichia coli EC-2 and O127:B8 endotoxins was determined to be 1.0 ng of endotoxin per kg of body weight. Not more than 1.0 ng of endotoxin (the threshold pyrogenic dose) per the highest recommended human dose or the USP pyrogen test dose per kg of body weight, whichever dose is more stringent, is a logical limit for the quantity of bacterial endotoxin in small-volume parenteral products. Excellent correlation was attained when this criterion was used to compare the Limulus amoebocyte lysate assay with the USP pyrogen test.  相似文献   

8.
Colonic microbiota synthesize a considerable amount of thiamine in the form of thiamine pyrophosphate (TPP). Recent functional studies from our laboratory have shown the existence of a specific, high-affinity, and regulated carrier-mediated uptake system for TPP in human colonocytes. Nothing, however, is known about the molecular identity of this system. Here we report on the molecular identification of the colonic TPP uptake system as the product of the SLC44A4 gene. We cloned the cDNA of SLC44A4 from human colonic epithelial NCM460 cells, which, upon expression in ARPE19 cells, led to a significant (p < 0.01, >5-fold) induction in [3H]TPP uptake. Uptake by the induced system was also found to be temperature- and energy-dependent; Na+-independent, slightly higher at acidic buffer pH, and highly sensitive to protonophores; saturable as a function of TPP concentration, with an apparent Km of 0.17 ± 0.064 μm; and highly specific for TPP and not affected by free thiamine, thiamine monophosphate, or choline. Expression of the human TPP transporter was found to be high in the colon and negligible in the small intestine. A cell surface biotinylation assay and live cell confocal imaging studies showed the human TPP transporter protein to be expressed at the apical membrane domain of polarized epithelia. These results show, for the first time, the molecular identification and characterization of a specific and high-affinity TPP uptake system in human colonocytes. The findings further support the hypothesis that the microbiota-generated TPP is absorbable and could contribute toward host thiamine homeostasis, especially toward cellular nutrition of colonocytes.  相似文献   

9.
The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling.  相似文献   

10.
Classical late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease caused by mutations in CLN2, the gene encoding the lysosomal protease tripeptidyl-peptidase I (TPP I). The natural substrates for TPP I and the pathophysiological processes associated with lysosomal storage and disease progression are not well understood. Detailed characterization of TPP I substrate specificity should provide insights into these issues and also aid in the development of improved clinical and biochemical assays. To this end, we constructed fluorogenic and standard combinatorial peptide libraries and analyzed them using fluorescence and mass spectrometry-based activity assays. The fluorogenic group 7-amino-4-carbamoylmethylcoumarin was incorporated into a series of 7-amino-4-carbamoylmethylcoumarin tripeptide libraries using a design strategy that allowed systematic evaluation of the P1, P2, and P3 positions. TPP I digestion of these substrates liberates the fluorescence group and results in a large increase in fluorescence that can be used to calculate kinetic parameters and to derive the substrate specificity constant kcat/KM. In addition, we implemented a mass spectrometry-based assay to measure the hydrolysis of individual peptides in peptide pools and thus expand the scope of the analysis. Nonfluorogenic tetrapeptide and pentapeptide libraries were synthesized and analyzed to evaluate P1' and P2' residues. Together, this analysis allowed us to predict the relative specificity of TPP I toward a wide range of potential biological substrates. In addition, we evaluated a variety of new fluorogenic peptides with a P3 Arg residue, and we demonstrated their superiority compared with the widely used substrate Ala-Ala-Phe-AMC for selectively measuring TPP I activity in biological specimens.  相似文献   

11.
With increasing geographic spread, frequency, and magnitude of outbreaks, dengue continues to pose a major public health threat worldwide. Dengvaxia, a dengue live-attenuated tetravalent vaccine, was licensed in 2015, but post hoc analyses of long-term data showed serostatus-dependent vaccine performance with an excess risk of hospitalized and severe dengue in seronegative vaccine recipients. The World Health Organization (WHO) recommended that only persons with evidence of past dengue infection should receive the vaccine. A test for pre-vaccination screening for dengue serostatus is needed. To develop the target product profile (TPP) for a dengue pre-vaccination screening test, face-to-face consultative meetings were organized with follow-up regional consultations. A technical working group was formed to develop consensus on a reference test against which candidate pre-vaccination screening tests could be compared. The group also reviewed current diagnostic landscape and the need to accelerate the evaluation, regulatory approval, and policy development of tests that can identify seropositive individuals and maximize public health impact of vaccination while avoiding the risk of hospitalization in dengue-naive individuals. Pre-vaccination screening strategies will benefit from rapid diagnostic tests (RDTs) that are affordable, sensitive, and specific and can be used at the point of care (POC). The TPP described the minimum and ideal characteristics of a dengue pre-vaccination screening RDT with an emphasis on high specificity. The group also made suggestions for accelerating access to these RDTs through streamlining regulatory approval and policy development. Risk and benefit based on what can be achieved with RDTs meeting minimal and optimal characteristics in the TPP across a range of seroprevalences were defined. The final choice of RDTs in each country will depend on the performance of the RDT, dengue seroprevalence in the target population, tolerance of risk, and cost-effectiveness.  相似文献   

12.
Abstract Oxygen uptake by Streptococcus sanguis ATCC10556 in the presence of pyruvate was studied. In permeabilized cells pyruvate oxidase activity dependent on thiamine pyrophosphate (TPP), flavin adenine dinucleotide (FAD) and orthophosphate was demonstrated. The activity was ten times higher in cells grown aerobically than in cells grown anaerobically. Acetyl phosphate was a product, and 1.1 mol of acetyl phosphate was formed per mol of oxygen taken up. No pyruvate dehydrogenase activity dependent on NAD, coenzyme A (CoA) and TPP was detected.  相似文献   

13.
14.
Biological products offer advantages over chemotherapeutics in aquaculture. Adoption in commercial application is lacking due to limitations in process and product development that address key end user product requirements such as cost, efficacy, shelf life and convenience. In previous studies, we have reported on the efficacy, physiological robustness and low-cost spore production of a Bacillus cereus isolate (NRRL 100132). This study examines the development of suitable spore recovery, drying, formulation and tablet production from the fermentation product. Key criteria used for such downstream process unit evaluation included spore viability, recovery, spore balance, spore re-germination, product intermediate stability, end product stability and efficacy. A process flow sheet comprising vertical tube centrifugation, fluidised bed agglomeration and tablet pressing yielded a suitable product. The formulation included corn steep liquor and glucose to enhance subsequent spore re-germination. Viable spore recovery and spore balance closure across each of the process units was high (>70% and >99% respectively), with improvement in recovery possible by adoption of continuous processing at large scale. Spore re-germination was 97%, whilst a product half-life in excess of 5 years was estimated based on thermal resistance curves. The process resulted in a commercially attractive product and suitable variable cost of production.  相似文献   

15.
Cyclopiazonic acid (CPA), a fungal metabolite produced by Aspergillus and Penicillium, potentiated the accumulation of the quaternary cation tetraphenylphosphonium (TPP+) in cultured pig renal epithelial cells. This is the first report of a natural product mediating the tight and apparently nonsaturable binding of a membrane potential probe to subcellular compartments. The potentiated TPP+ accumulation was dose dependent, nonsaturable, and not a result of hyperpolarization across the plasma membrane. Cyclopiazonic acid-potentiated accumulation was completely inhibited by the protonophore carbonylcyanide-m-chlorophenylhydrazone (CCCP). Dinitrophenol (DNP), tetrahexylammonium (THA), and n-ethylmaleimide (NEM) were also effective inhibitors of CPA-potentiated TPP+ accumulation. Although CPA-potentiated TPP+ uptake appeared to be energy dependent, TPP+ efflux (in the presence of CCCP) from CPA-treated cells was incomplete and most of the TPP+ accumulated in the presence of CPA was tightly bound. Dicyclohexylcarbodiimide (DCC), verapamil, and monensin also stimulated TPP+ accumulation, but the TPP+ which accumulated in the presence of these compounds was not tightly bound. As with controls, fractionation of cells which had accumulated TPP+ in the presence of DCC, verapamil, or monensin always resulted in near complete recovery (greater than 93%) of the TPP+ in the cytosolic fraction, whereas with CPA, greater than 88% of the TPP+ was recovered noncovalently bound in the plasma membrane and mitochondrial fractions. These results are consistent with the hypothesis that CPA-potentiated TPP+ accumulation is a result of potentiated partitioning of TPP+ into the plasma membranes and mitochondria of LLC-PK1 cells.  相似文献   

16.
Protein turnover rates in neonates have been calculated largely by measuring urinary [15N]urea enrichment following administration of [15N]glycine. Although ammonia has been increasingly recognized as an end product of nitrogen metabolism, in neonates it yields a different estimate of protein turnover than does urea. Comparisons of ammonia and urea end products in parenterally fed neonates have not previously been reported. A third and independent way of estimating protein turnover, developed for adults, is to use breath 13CO2 as an end product following administration of [1-13C]leucine. We therefore carried out simultaneous measurements of protein turnover in 10 parenterally fed neonates, using the three end products. The infants were clinically stable, weighed 2.6 +/- 0.2 kg, and received 3.1 +/- 0.2 g.kg-1.d-1 of amino acid, 2.2 +/- 0.1 g.kg-1.d-1 of lipids, and an energy intake of 90 +/- 4 kcal.kg-1.d-1 (1 kcal = 4.186 kJ). The turnover estimates derived from the 13CO2 and [15N]urea end products were very similar. The [15N]ammonia end product produced values approximately 66% (p less than 0.01) of the other two. We conclude that the ammonia and urea end products probably originate in different precursor pools. The similarity of the urea and breath carbon dioxide results helps validate the use of the urea end product in studying the nitrogen metabolism of parenterally fed neonates. Ideally in future studies two or more end products should be used, since they provide information about different aspects of the neonates' protein metabolism.  相似文献   

17.
Sulfoacetaldehyde sulfo-lyase, which decomposes sulfoacetaldehyde to sulfite and acetate, was extracted from a bacterium grown on taurine, and purified, and characterized. A method for assay of enzyme activity was devised on formation of a bisulfite adduct with benzaldehyde. The enzyme was purified 14-fold from an extract of cells grown on taurine and appeared homogeneous on disc-electrophoresis. The molecular weight of the enzyme was estimated to be 85,000 by gel filtration. The enzyme required thiamine pyrophosphate (TPP) and Mg2+ for activity and preincubation with TPP and Mg2+ was required for maximum activity. The optimum pH for activity was 7.5. The Km value for TPP was determined to be 2.7 muM and that for sulfoacetaldehyde to be 5.0mM. Sulfite was produced only from sulfoacetaldehyde among a variety of sulfonates tested. rho-Chloromercuribenzoate, EDTA, and sulfite, a reaction product, inhibited the enzyme reaction. The enzyme seemed to be inducible, since activity was found in extracts of cells grown on taurine but not on peptone.  相似文献   

18.
Mitochondria play key roles in a broad range of biomedical situations, consequently there is a need to direct bioactive compounds to mitochondria as both therapies and probes. A successful approach has been to target compounds to mitochondria by conjugation to lipophilic cations, such as triphenylphosphonium (TPP), which utilize the large mitochondrial membrane potential (Δψm, negative inside) to drive accumulation. This has proven effective both in vitro and in vivo for a range of bioactive compounds and probes. However so far only neutral appendages have been targeted to mitochondria in this way. Many bioactive functional moieties that we would like to send to mitochondria contain ionisable groups with pK a in the range that creates an assortment of charged species under physiological conditions. To see if such ionisable compounds can also be taken up by mitochondria, we determined the general requirements for the accumulation within mitochondria of a TPP cation conjugated to a carboxylic acid or an amine. Both were taken up by energised mitochondria in response to the protonmotive force. A lipophilic TPP cation attached to a carboxylic acid was accumulated to a greater extent than a simple TPP cation due to the interaction of the weakly acidic group with the pH gradient (ΔpH). In contrast, a lipophilic TPP cation attached to an amine was accumulated less than the simple cation due to exclusion of the weakly basic group by the ΔpH. From these data we derived a simple equation that describes the uptake of lipophilic cations containing ionisable groups as a function of Δψm, ΔpH and pK a. These findings may facilitate the rational design of additional mitochondrial targeted probes and therapies.  相似文献   

19.
The antimicrobial effectiveness or preservative effectiveness test is described in the tripartite compendia for sterile parenteral multi-dose formulated products. The execution of the test is essentially harmonized with respect to inoculum preparation and test execution but not the acceptance criteria. This article describes how a single test can be performed that procedurally satisfies all of the compendia and their acceptance criteria.  相似文献   

20.
Telomere maintenance is essential for the long-term proliferation of human pluripotent stem cells, while their telomere length set point determines the proliferative capacity of their differentiated progeny. The shelterin protein TPP1 is required for telomere stability and elongation, but its role in establishing a telomere length set point remains elusive. Here, we characterize the contribution of the shorter isoform of TPP1 (TPP1S) and the amino acid L104 outside the TEL patch, TPP1’s telomerase interaction domain, to telomere length control. We demonstrate that cells deficient for TPP1S (TPP1S knockout [KO]), as well as the complete TPP1 KO cell lines, undergo telomere shortening. However, TPP1S KO cells are able to stabilize short telomeres, while TPP1 KO cells die. We compare these phenotypes with those of TPP1L104A/L104A mutant cells, which have short and stable telomeres similar to the TPP1S KO. In contrast to TPP1S KO cells, TPP1L104A/L104A cells respond to increased telomerase levels and maintain protected telomeres. However, TPP1L104A/L104A shows altered sensitivity to expression changes of shelterin proteins suggesting the mutation causes a defect in telomere length feedback regulation. Together this highlights TPP1L104A/L104A as the first shelterin mutant engineered at the endogenous locus of human stem cells with an altered telomere length set point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号