首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous-flow moving bed biofilm reactor (MBBR) under aerobic conditions was established for simultaneous nitrification and denitrification (SND), and microbial communities were investigated by a combination of denaturing gel gradient electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). DGGE analysis has revealed more similar microbial community structures formed in the biofilms with more similar carbon nitrogen (C/N) ratios. FISH analysis shows that the dominance of both Betaproteobacteria ammonia-oxidizing bacteria and Nitrospira-like nitrite-oxidizing bacteria were negatively correlated to C/N ratios. Sequence analysis of DGGE bands has indicated the presence of anoxic denitrifying bacteria Agrobacterium tumefaciens and Rhizobium sp., suggesting that the oxygen gradient inside the biofilm may be responsible for the mechanism of SND in aerobic MBBRs. The study confirms that appropriate control of microbial community structure resulting from optimal C/N ratio is beneficial in improving SND, thus optimizing nitrogen removal in aerobic MBBR. The established SND-based MBBR can save operation space and time in comparison to the traditional nitrogen removal process, and might be very attractive for future practical applications.  相似文献   

2.
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.  相似文献   

3.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

4.
Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

5.
Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.  相似文献   

6.
Abstract

Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

7.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log(10) cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log(10) cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

8.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

9.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log10 cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log10 cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

10.
To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.  相似文献   

11.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

12.
Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.  相似文献   

13.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

14.
In this study, ammonia-oxidizing bacteria present in biofilms resulting from a nitrifying reactor were detected by both a conventional FISH technique and an original in situ PCR technique. Both techniques showed that ammonia-oxidizing bacteria were found near the surface of the biofilms. However, after the biofilm had been exposed to 2 weeks of ammonia starvation, ammonia-oxidizing bacteria present in the biofilm could not be detected by fluorescence in situ hybridization (FISH) because they did not have sufficient copies of rRNA. In contrast, ammonia-oxidizing bacteria could be detected by in situ PCR with strong signal. It was thus demonstrated that a cell possessing a specific functional gene is detectable by in situ PCR regardless of its activity.  相似文献   

15.
In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano, Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm (Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the three-month incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work, a multiple-species community assemblage was obtained for further stone colonisation experiments.  相似文献   

16.
Bacterial Community Succession in Natural River Biofilm Assemblages   总被引:1,自引:0,他引:1  
Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.  相似文献   

17.
AIMS: To determine the impact of protozoan grazing on the population dynamics of a multispecies bacterial biofilm community. METHODS AND RESULTS: Grazing by Acanthamoeba castellanii and the ciliate Colpoda maupasi upon biofilm and planktonic communities, composed of Klebsiella pneumoniae, Pseudomonas fluorescens and Staphylococcus epidermidis was investigated. Biofilms were formed using glass coverslips, held in a carousel device, as substrata for biofilm formation or in glass flow cells. The predatory effects of the amoeba were generally confined to the biofilm, where grazing rates corresponded to losses from the biofilm equivalent to ca 30,000 biofilm cells cm(-2) h(-1), with the amoeba becoming an integral part of the community. C. maupasi reduced the thickness of mature multispecies biofilms at steady-state from 500 to <200 microm. CONCLUSIONS: We report that the presence of the protozoa A. castellanii and C. maupasi markedly influence population dynamics within defined biofilm communities. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study dispels the popular opinion that biofilms are protected against predation by protozoa. A. castellanii clearly has the capacity to graze mixed biofilm communities and to become integrally associated with them, whereas the ciliate C. maupasi reduced biofilm thickness by up to 60%.  相似文献   

18.
Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow. Flow clearly shaped the development of biofilm architecture and community composition, as revealed by microscopic investigation, denaturing gradient gel electrophoresis (DGGE) analysis, and sequencing. While biofilm growth patterns were undirected under laminar flow, they were clearly directed into ridges and conspicuous streamers under turbulent flow. A total of 51 biofilm DGGE bands were detected; the average number ranged from 13 to 16. Successional trajectories diverged from an initial community that was common in all flow treatments and increasingly converged as biofilms matured. We suggest that this developmental pattern was primarily driven by algae, which, as “ecosystem engineers,” modulate their microenvironment to create similar architectures and flow conditions in all treatments and thereby reduce the physical effect of flow on biofilms. Our results thus suggest a shift from a predominantly physical control to coupled biophysical controls on bacterial community succession in stream biofilms.  相似文献   

19.
Biophysical controls on community succession in stream biofilms   总被引:1,自引:0,他引:1  
Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow. Flow clearly shaped the development of biofilm architecture and community composition, as revealed by microscopic investigation, denaturing gradient gel electrophoresis (DGGE) analysis, and sequencing. While biofilm growth patterns were undirected under laminar flow, they were clearly directed into ridges and conspicuous streamers under turbulent flow. A total of 51 biofilm DGGE bands were detected; the average number ranged from 13 to 16. Successional trajectories diverged from an initial community that was common in all flow treatments and increasingly converged as biofilms matured. We suggest that this developmental pattern was primarily driven by algae, which, as "ecosystem engineers," modulate their microenvironment to create similar architectures and flow conditions in all treatments and thereby reduce the physical effect of flow on biofilms. Our results thus suggest a shift from a predominantly physical control to coupled biophysical controls on bacterial community succession in stream biofilms.  相似文献   

20.
Natural and anthropogenic impacts such as terrestrial runoff, influence the water quality along the coast of the Great Barrier Reef (GBR) and may in turn affect coral reef communities. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. As a prerequisite to study the effects of water quality on biofilm communities, appropriate biofilm substrates for deployment in the field must be developed and evaluated. This study investigates the effect of different settlement substrates (i.e. glass slides, ceramic tiles, coral skeletons and reef sediments) on bacterial biofilm communities grown in situ for 48 days at two locations in the Whitsunday Island Group (Central GBR) during two sampling times. Bacterial communities associated with the biofilms were analysed using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA genes. Findings revealed that substrate type had little influence on bacterial community composition. Of particular relevance, glass slides and coral skeletons exhibited very similar communities during both sampling times, suggesting the suitability of standardized glass slides for long-term biofilm indicator studies in tropical coral reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号