首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.  相似文献   

2.
Monoculture (MC) soybean, a common practice in the Northeast China, causes significant declines in soybean yield and quality. The objective of this study was to evaluate the responses of the soil microbial community and soybean yield to different soybean cropping systems. Three cropping systems were compared, (1) corn-soybean rotation (corn-corn-soybean, CS), (2) MC soybean for 3 years (S3), (3) MC soybean for 9 years (S9). Both bulk and rhizosphere soil samples were collected at three growth stages: two trifoliate (V2), full bloom (R2), and full seed (R6), respectively. Soil microbial DNA was analyzed using polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE) to assess changes in composition of bacterial and fungal communities. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant microbial populations. Some prominent differences were observed in bacterial DGGE patterns of amplified 16S rDNA (V3 region) among rhizosphere soils. These major differences included one DGGE band (showing 100% similarity to Arthrobacter sp.) that was enriched at R2 stages in CS and S9, and another band with 97% sequence similarity to an uncultured actinobacterium was detected at R6 stage in CS, and at R2 and R6 stages in S9. The bacterial community from bulk soil showed no significant band change in DGGE patterns among different cropping systems. In fungal DGGE patterns of the amplified 18S rDNA partial fragment, one specific band (showing 98% similarity to Trichoderma viride) occurred in rhizosphere soil of treatment CS at V2 and R6 stages and treatment S9 at R6 stage. None of the above bands were detected in treatment S3. The soybean yields and plant heights from CS and S9 were greater than those from S3. Moreover, catalase activities from CS and S9 at V2 and R2 stages were higher than those tested from S3 at the corresponding times in rhizosphere soil. The present results showed that DGGE patterns were not able to detect significant differences in diversity or evenness among microbial communities, but significant differences were found in the composition of bacterial and fungal community structures. Some distinguished bands from bacterial and fungal DGGE patterns were only enriched in CS and S9 soil, which could potentially play an important role in soybean growth development.  相似文献   

3.
PCR-DGGE技术在农田土壤微生物多样性研究中的应用   总被引:43,自引:6,他引:43  
罗海峰  齐鸿雁  薛凯  张洪勋 《生态学报》2003,23(8):1570-1575
变性梯度凝胶电泳技术(DGGE)在微生物生态学领域有着广泛的应用。研究采用化学裂解法直接提取出不同农田土壤微生物基因组DNA,并以此基因组DNA为模板,选择特异性引物F357GC和R515对16S rRNA基因的V3区进行扩增,长约230bp的PCR产物经变性梯度凝胶电泳(DGGE)进行分离后,得到不同数目且分离效果较好的电泳条带。结果说明,DGGE能够对土壤样品中的不同微生物的16S rRNA基因的V3区的DNA扩增片断进行分离,为这些DNA片断的定性和鉴定提供了条件。与传统的平板培养方法相比,变性梯度凝胶电泳(DGGE)技术能够更精确的反映出土壤微生物多样性,它是一种有效的微生物多样性研究技术。  相似文献   

4.

The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNAV3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition, the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community. The effects of the single factors with lower concentrations on the community structure were weaker than those with higher concentrations. Moreover, the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors. The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOGGNsystem were two relatively sensitive directors corresponding to the stress presented in this study. Between methamodophos and copper, there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities. The DHA of soil under the combined stresses was lower than that of the control and that under the single factors, and the BIOLOGGN substrate utilizing patterns of soil treated by combinations were distinctively differentiated from the control and their corresponding single factors. From all of above, the methamidophos, copper, especially their combinations had the clearly potential ecotoxicological risks to influence the natural soil microbial ecological system by changing the structure, richness, and the functional characteristics of microbial community.

  相似文献   

5.
The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNAV3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition, the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community. The effects of the single factors with lower concentrations on the community structure were weaker than those with higher concentrations. Moreover, the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors. The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOGGNsystem were two relatively sensitive directors corresponding to the stress presented in this study. Between methamodophos and copper, there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities. The DHA of soil under the combined stresses was lower than that of the control and that under the single factors, and the BIOLOGGN substrate utilizing patterns of soil treated by combinations were distinctively differentiated from the control and their corresponding single factors. From all of above, the methamidophos, copper, especially their combinations had the clearly potential ecotoxicological risks to influence the natural soil microbial ecological system by changing the structure, richness, and the functional characteristics of microbial community.  相似文献   

6.
Fusarium wilt is an increasingly serious disease of watermelon that reduces crop productivity. Changes in microorganism populations and bacterial and fungal community structures in rhizosphere soil of watermelon cultivars resistant or susceptible to Fusarium oxysporum f. sp. niveum were investigated using a plate culture method and PCR-DGGE analysis. Plate culture showed that populations of culturable bacteria and actinomycetes were more abundant in the rhizosphere of the resistant watermelon cultivar than the susceptible cultivar, but the fungi population had the opposite pattern. Populations of Penicillium , Fusarium , and Aspergillus were significantly lower in the resistant cultivar than the susceptible cultivar at the fruiting and uprooting stages (p?< 0.05). Pattern matching analysis generated the dendrogram of the DGGE results indicating the relatedness of the different resistant watermelon cultivars and their corresponding rhizosphere microbial communities. Further sequencing analysis of specific bands from DGGE profiles indicated that different groups of bacteria and fungi occurred in the rhizosphere of different watermelon cultivars. Our results demonstrated that plant genotype had a significant impact on soil microbial community structure, and the differences in the rhizosphere microbial community may contribute to the differences in resistance to F. oxysporum f. sp. niveum.  相似文献   

7.
Impact of fumigants on soil microbial communities.   总被引:12,自引:0,他引:12  
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

8.
Tropical agroecosystems are subject to degradation processes such as losses in soil carbon, nutrient depletion, and reduced water holding capacity that occur rapidly resulting in a reduction in soil fertility that can be difficult to reverse. In this research, a polyphasic methodology has been used to investigate changes in microbial community structure and function in a series of tropical soils in western Kenya. These soils have different land usage with both wooded and agricultural soils at Kakamega and Ochinga, whereas at Ochinga, Leuro, Teso, and Ugunja a replicated field experiment compared traditional continuous maize cropping against an improved N-fixing fallow system. For all sites, principal component analysis of 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles revealed that soil type was the key determinant of total bacterial community structure, with secondary variation found between wooded and agricultural soils. Similarly, phospholipid fatty acid (PLFA) analysis also separated wooded from agricultural soils, primarily on the basis of higher abundance of monounsaturated fatty acids, anteiso- and iso-branched fatty acids, and methyl-branched fatty acids in the wooded soils. At Kakamega and Ochinga wooded soils had between five 5 and 10-fold higher levels of soil carbon and microbial biomass carbon than agricultural soils from the same location, whereas total enzyme activities were also lower in the agricultural sites. Soils with woody vegetation had a lower percentage of phosphatase activity and higher cellulase and chitinase activities than the agricultural soils. BIOLOG analysis showed woodland soils to have the greatest substrate diversity. Throughout the study the two functional indicators (enzyme activity and BIOLOG), however, showed lower specificity with respect to soil type and land usage than did the compositional indicators (DGGE and PLFA). In the field experiment comparing two types of maize cropping, both the maize yields and total microbial biomass were found to increase with the fallow system. Moreover, 16S rRNA gene and PLFA analyses revealed shifts in the total microbial community in response to the different management regimes, indicating that deliberate management of soils can have considerable impact on microbial community structure and function in tropical soils.  相似文献   

9.
The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNA V3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition,the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community. The effects of the single factors with lower concentrations on the communiy structure were weaker than those with higher concentrations. Moreover, the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors. The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOGGNsystem were two relatively sensitive directors corresponding to the stress presented in this study. Between methamodophos and copper, there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities. The DHA of soil under the combined stresses was lower than that of the control and that under the single factors, and the BIOLOGGN substrate utilizing patterns of soil treated by combinations were distinctively differentiated from the control and their corresponding single factors. From all of above, the methamidophos, copper, especially their combinations had the clearly potential ecotoxicological risks to influence the natural soil microbial ecological system by changing the structure, richness, and the functional characteristics of microbial community.  相似文献   

10.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

11.
Impact of Fumigants on Soil Microbial Communities   总被引:11,自引:1,他引:11       下载免费PDF全文
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

12.
This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile.  相似文献   

13.
【目的】为探讨耕作和施加有机肥、化肥对黑土表层(0-30cm)、中层(100-130cm)及深层(200-230cm)细菌群落结构的影响,【方法】应用DGGE技术对相应土层中细菌群落结构进行了解析。【结果】结果表明,与对照相比,耕作和施加有机肥、化肥对表层黑土细菌群落结构影响较大,二者差异度为4%;而对中层和深层细菌群落结构影响较小,二者差异度为2%。对于细菌群落结构的垂向变化,中层和深层中细菌群落结构的相似性远远高于同表层的相似性。【结论】可见,耕作和施加有机肥、化肥仅对黑土表层土壤(0-30cm)具有一定的影响,而对100cm以下土壤细菌群落影响较小,细菌群落随土壤深度不同的垂向变化要远高于土壤管理措施造成的影响。  相似文献   

14.
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.  相似文献   

15.
Maintenance of soil functioning following erosion of microbial diversity   总被引:3,自引:0,他引:3  
The paradigm that soil microbial communities, being very diverse, have high functional redundancy levels, so that erosion of microbial diversity is less important for ecosystem functioning than erosion of plant or animal diversity, is often taken for granted. However, this has only been demonstrated for decomposition/respiration functions, performed by a large proportion of the total microbial community, but not for specialized microbial groups. Here, we determined the impact of a decrease in soil microbial diversity on soil ecosystem processes using a removal approach, in which less abundant species were removed preferentially. This was achieved by inoculation of sterile soil microcosms with serial dilutions of a suspension obtained from the same non-sterile soil and subsequent incubation, to enable recovery of community size. The sensitivity to diversity erosion was evaluated for three microbial functional groups with known contrasting taxonomic diversities (ammonia oxidizers < denitrifiers < heterotrophs). Diversity erosion within each functional group was characterized using molecular fingerprinting techniques: ribosomal intergenic spacer analysis (RISA) for the eubacterial community, denaturing gradient gel electrophoresis (DGGE) analysis of nirK genes for denitrifiers, and DGGE analysis of 16S rRNA genes for betaproteobacterial ammonia oxidizers. In addition, we simulated the impact of the removal approach by dilution on the number of soil bacterial species remaining in the inoculum using values of abundance distribution of bacterial species reported in the literature. The reduction of the diversity of the functional groups observed from genetic fingerprints did not impair the associated functioning of these groups, i.e. carbon mineralization, denitrification and nitrification. This was remarkable, because the amplitude of diversity erosion generated by the dilution approach was huge (level of bacterial species loss was estimated to be around 99.99% for the highest dilution). Our results demonstrate that the vast diversity of the soil microbiota makes soil ecosystem functioning largely insensitive to biodiversity erosion even for functions performed by specialized groups.  相似文献   

16.
钟文辉  蔡祖聪  尹力初  张鹤 《生态学报》2007,27(10):4011-4018
以中国科学院红壤生态试验站的发育于第四纪红粘土的种稻红壤为研究对象,采用PCR-DGGE方法研究了长期施用无机肥对土壤微生物群落多样性的影响。在种植双季稻、连续13a施用不同无机肥后,土壤中细菌、古菌、放线菌和真菌的群落结构发生了较大的变化。未种植水稻的土壤与种稻土壤间四类微生物SSUrDNADGGE带谱相似性只有33%~66%。施磷肥的处理NP、PK、NPK之间微生物群落结构相似性较高,4类微生物的SSUrDNADGGE带谱相似性高达75%~81%。施氮钾肥(NK)、不施肥(CK)处理与施磷肥处理间土壤微生物群落结构的差异较大,其四类微生物的SSUrDNADGGE带谱相似性分别为69%~77%、55%~77%。研究的目的是深入地了解土壤中微生物群落的多样性,为科学施肥、合理利用土壤、保护微生物多样性和实现农业生态系统的可持续发展提供科学依据。  相似文献   

17.
In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.  相似文献   

18.
研究确定土壤微生物基因组DNA提取方法、PCR扩增条件、DGGE电泳条件,为进一步研究分析土壤中微生物结构变化规律提供理论依据。土壤微生物基因组DNA提取采用直接法和间接法进行比较; PCR扩增条件调整扩增体系、DGGE电泳条件调整变性剂范围,并对其结果进行比较分析。通过对DGGE电泳相关条件的研究,结果显示,土壤中粗基因组DNA采用直接法提取,然后进行纯化; PCR扩增体系中加入BSA,DGGE电泳系统组成中变性剂浓度范围为35%~55%。确定了土壤微生物基因组DNA提取方法、PCR扩增条件、DGGE电泳条件,为后续的相关研究提供理论依据。  相似文献   

19.
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.  相似文献   

20.
Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA profiles were objectively digitized using an image analyzer; the individual microbial species in a community can thus be precisely quantified. The similarity between various microbial communities was compared to the digitized DGGE profiles using the cluster analyses technique. The microbial community in a biofilm was considerably different from that in suspended sludge obtained from the same system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号