首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurosecretory Caudo-Dorsal Cells (CDC) in the cerebral ganglia of the freshwater pulmonate snail Lymnaea stagnalis produce an ovulation stimulating hormone. Previously it has been shown that neuronal and non-neuronal inputs are involved in the regulation of their activity. The degree of autonomy of these cells has been investigated by studying with morphometric methods the ultrastructure of CDC maintained in vitro. CDC of isolated cerebral ganglia which were cultured for 7 days show a considerable rate of synthesis, transport and release of neurohormone. Apparently these processes can proceed in the absence of neuronal and hormonal inputs from outside the cerebral ganglia. Completely isolated CDC, however, do not show neurosecretory activity in vitro; active Golgi zones, indicating the formation of neurosecretory elementary granules, are absent from such cells. Isolation does not seem to affect general cell functions such as protein synthesis and respiration. It is suggested that a neuronal input, originating within the cerebral ganglia, is necessary for the stimulation of CDC neurosecretory activity. Techniques are described for the isolation and culture of neurosecretory cells of L. stagnalis.  相似文献   

2.
The distribution of FMRFamide-immunoreactive neurons in the central nervous system of the freshwater pulmonate, Helisoma duryi is described. All parts of the central nervous system except the two pleural and the right parietal ganglia, contain immunoreactive neurons. By immunogold techniques, only one kind of neurosecretory FMRFamide-immunoreactive cell (previously identified as the type-3 cell) was localized in the visceral and left parietal ganglia. This cell type has been previously implicated in an antidiuretic role. FMRFamide-immunoreactive material is found in the whole mount of the kidney as well as in kidney sections. Electron microscopic examination shows that the axons innervating either the smooth muscles of the kidney or the kidney itself contain neurosecretory granules morphologically similar to type-3 cells of the visceral and left parietal ganglia. When incubated in saline containing nanogram quantities of FMRFamide, the wet weight of the kidney increased. It is suggested that FMRFamide-like substance may function as an antidiuretic factor and that the kidney is a target organ of this peptide for osmoregulation.  相似文献   

3.
Summary The neurosecretory system of the freshwater snail Bulinus truncatus was investigated. With the Alcian blue-Alcian yellow (AB/AY) staining method at least 10 different types of neurosecretory cells (NSC) were distinguished in the ganglia of the central nervous system. The differences in staining properties of the NSC — with AB/AY the cells take on different shades of green and yellow — are borne out at the ultrastructural level: the NSC types contain different types of neurosecretory elementary granules.The neurosecretory system of B. truncatus is compared to that of Lymnaea stagnalis, the species which has received the most attention among the pulmonates. It appears from the comparison that the systems of both species show many similarities, although some differences are also apparent.  相似文献   

4.
Summary The light- and electronmicroscopical structure of neurones, glial cells, extra cellular spaces, and perineurium were investigated in the different sex phases of Crepidula fornicata L. (males, intersexes, females). The electronmicroscopical structures of the granules, present in all nerve cells, are very heterogeneous and similar to those of cytosomes. The origin, growth, and structural changes of the cytosomes are described and their probable function is discussed. The topographical position of the neurosecretory cells in the cerebral ganglia is constant. The secretory products of these cells are transported along the axons partly by a small neurosecretory pathway, but the neurosesecretory system of Crepidula (Prosobranchia) is not so highly developed as that in the cerebral ganglia of other gastropods (for example in pulmonates). The glial cells can be devided into two types according to their different staining, the electronmicroscopical structure of their granules and their position in the central neuropil or in the peripheral layer of nerve cells. The intersexual phase is marked by a more evident content of neurosecretory material and more and larger granules in the peripheral glial cells.

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

5.
Summary The ventral cord ganglia of the horseshoe crab, Limulus polyphemus, contains six distinct cell types: three appear to be ordinary neurons and three exhibit the staining affinities of neurosecretory cells.The presumed neurosecretory cells have been termed neurosecretory cell I (NSC I), NSC II and NSC III. NSC I cells contain a colloid-like inclusion which may occur as a single small vacuole or occupy more than one-half of the cell volume. Colloid inclusions occur with greater frequency toward the periphery, although small cells of similar staining affinity occur in cords extending to the fibrous core. The histochemical tests suggest that the cytoplasm is positive for proteins, but contains no strong acidic groups which may have been derived from S-S or S-H groups. The presence of carbohydrate is also indicated.NSC II cells exhibit distinct secretory cycles. Early in the cycle the cytoplasm becomes phloxinophilic and progresses to a distinct fuchsinophilic stage. Small homogeneous irregular inclusions are found in the axon hillock during the latter stages of the cycle. Histochemical tests suggest the presence of a carbohydrate and strong acidic groups which may have been derived from S-S or S-H groups. There are small cells present which appear to be immature neurosecretory cells.NSC III cells are characterized by a perinuclear ring of cytoplasm which is stained by chrome alum hematoxylin but not by paraldehyde fuchsin. A secretory cycle may also be present in this cell type.The three cell types presumed to be ordinary neurons exhibit no particular staining affinity for the stains or tests used in this study.This study was supported in part by a grant from the Central Fund for Research of the Pennsylvania State University.  相似文献   

6.
Four kinds of neurosecretory cells A, B, U and C are distinguished in the central nervous system of Dendrobaena atheca Cernosvitov. A cells, which show different morphological characteristics under different physiological states and during their cyclic changes, are the most active neurosecretory cells. They form the outer layer of the cortical cell zone in the cerebral ganglion. B cells are large and medium sized and are distributed in all parts of the central nervous system. U cells are found only in the sub-pharyngeal ganglion while C cells are distributed in the sub-pharyngeal as well as in the ventral nerve cord ganglion. The number and secretory activity of C cells decrease in caudal direction. Further, Gomori-positive cells are also observed in the ganglia of the vegetative nervous system. A rudimentary neurohaemal organ, the storage zone, has been observed in the cerebral ganglion and there appears to be another neurohaemal area in the ventral nerve cord ganglion. The storage zone is formed by the terminal ends of the axons of A cells. The chrome alum haematoxylin phloxin (CHP) and aldehyde fuchsin (AF) positive substances in the form of granules are found in this area. The cerebral ganglion is richly supplied by blood capillaries. The distal end of the axons of B cells are swollen like a bulb while in some cases the axons are united to form an axonal tract. Extra-cellular material is abundant in different parts of the nervous system. In all cell types, the perinuclear zone is the first to show activity in the secretory cycle. It appears that the nucleus may be involved in the elaboration of the neurosecretory material in the cells.  相似文献   

7.
Summary In the medulla terminalis ganglionic X-organ (MTGX) of the eyestalk of the freshwater prawn, Palaemon paucidens, six peptidergic neuro-secretory cell types (A-, B-, C-, D-, E-, and F-cells) are distinguishable on the basis of the different morphology of their elementary granules and rough endoplasmic reticulum (rER). All of these cell types seem to correspond to Type-IIIa cells or dispersing Type-IV cells, that have previously been differentiated at the light microscopic level (Hisano, 1974), as judged from the dimensions of their cell bodies and nuclei. Two other peptidergic neurosecretory cell types that are apparently comparable to the Type-II and Type-IIIb cells (Hisano, 1974), respectively, are recognized in parts of the optic ganglia other than MTGX, and these are now designated as Gand H-cells, respectively. All the remaining cell types, designated as Type-I, cluster-forming Type-IV, Type-V and Type-VI cells in our previous light microscopic study, have small cored-vesicles in their cytoplasm. It remains undecided whether these, possibly aminergic, neurons are neurosecretory or not.The author wishes to express his sincere appreciation to Prof. T. Aoto for his invaluable advice during the course of this study.  相似文献   

8.
Three major groups of neurosecretory cells are described in the larval brain of Galleria mellonella at two different times during the last larval instar and in larval brains after 72 hr of culture in vitro. The medial group in vivo consists of four distinct neurosecretory cell types, based on characteristic size and morphology, while the posterior and lateral groups each contain a single distinct type of neurosecretory cell. Morphological differences between the same neurosecretory cells at the different times during the last instar are most apparent in the lateral L-1 cells and in the medial M-2 cells, where pleiomorphism is particularly evident in the size, density and accumulations of neurosecretory granules. The only neurosecretory cells in which apparent synthesis of neurosecretory granules is still observed after culture of the brain in vitro are the medial M-2 cells. The other neurosecretory cell types show no accumulation of neurosecretory granules nor new synthesis of neurosecretory material, but are similar to neurosecretory cells in the brain in vivo in all other respects. The morphology of the neurosecretory cells in the larval brain in vivo and in vitro is discussed in relation to their appearance at the light microscopic level and to a known neurohormonal function of the brain which is maintained during 72 hr in vitro.  相似文献   

9.
G. Smith    E. Naylor 《Journal of Zoology》1972,166(3):313-321
The optic ganglia neurosecretory cells of male and female Carcinus maenas during intermoult are distinguishable into six types based on size, location, appearance and method of secretory material release from the perikaryon. Release occurs via the sinus gland and also, in one case, directly into blood capillaries among the neurosecretory cells themselves. The sinus gland consists of axonal extensions of the neurosecretory cells; no secretory granules are produced there and nuclei observed between the axonal endings are those of ill-defined glial cells.  相似文献   

10.
The neurosecretory system of the giant garden slug Limax maximus was studied using the alcian blue/alcian yellow (AB/AY) staining technique for neurosecretion. Stainable cells could be identified in the paired cerebral, pleural, parietal, and buccal ganglia, and in the visceral ganglion. The cells occur as single cells or in groups of up to 100, with diameters ranging between 10 and 70 mu m. Axon tracts could only be traced for a small number of cells; neurohemal areas were not conclusively identified. The morphological similarities of the neurosecretory system of L. maximus is compared with that of other investigated stylommatophoran slugs.  相似文献   

11.
The anatomy of the neurosecretory cells in the brain-subesophageal ganglion complex of female European corn borer moth Ostrinia nubilalis (Lepidoptera: Pyralidae) was studied using histological and cobalt backfilling techniques. Histological staining revealed the presence of 2 median and one lateral neurosecretory cell groups in the brain. These brain neurosecretory cells are made up of mainly type A cells with a few type B cells in the median group. Three type C neurosecretory cell clusters occupy the apparent mandibular, maxillary, and labial neuromeres at the ventral median aspect of the subesophageal ganglion. Axonal pathways of the neurosecretory cell groups were delineated by retrograde cobalt filling from the corpora cardiaca. Fibers of the 3 brain neurosecretory cell groups merged to form a distinct axonal tract that exits the brain via the fused nervi corporis cardiaci-1 + 2. Cobalt backfilling from the corpora cardiaca filled 4 groups of cell bodies in the subesophageal ganglion. The presence in the subesophageal ganglion of extensive dendritic arborizations derived from the brain suggests interactions between neurosecretory cell groups in the 2 head ganglia.  相似文献   

12.
The ultrastructure of lateral nerve cords (LNC) of Triaenophorus nodulosus has been studied. 4 of the 6 types of neurones earlier reported for cerebral ganglia are present in LNC: multipolars, bipolars, unipolars and "light"; neurosecretory cells of the 7th type lie in transverse commissures. The growth and formation of LNC occur at the expense of undifferentiated cells found on the cord periphery among mature neurones. LNC are surrounded with specialized envelopes made of cell processes of excretory vessels and a fibrillar matrix formed at early stages of cestode development. In large axons, cisternae of the cross reticulum are detected, which can serve as ultrastructural marker of the synapse. Two types of muscle innervation are determined. The direct innervation of muscular fibres is realized by peripheral neurosecretory neurones, which form contacts of the paracrine type. The central or sarco-neural innervation of muscular fibers occurs in LNC via the entering muscular processes.  相似文献   

13.
Several types of NS cells were identified in Portunus sanguinolentus--five types (A, A', B, C and D) in the brain and thoracic ganglion, four types (A, B, C and D) in the commissural ganglia and four types (alpha, beta, gamma and delta) in the optic ganglia. The distribution of these NS cells is described. Cytochemically, the neurosecretory material in the NS cells has a carbohydrate moiety and is rich in disulphide groups, lipids, phospholipids and RNA. It contains a small amount of sulphydryl groups and protein-bound NH2 groups, but no tyrosine or tryptophan. The NS activity of the brain was found to be closely associated with the reproductive and moult cycles. Just before the initiation of vitellogenesis and moulting the NS cells display secretory hyperactivity. Axonal transport of NS material was also observed in the NS cells.  相似文献   

14.
In Menippe rumphii five types of neurosecretory cells are found in the cerebral, commissural and thoracic ganglia. Detailed cytochemical observations on the neurosecretory cells revealed that they have responded strongly to saliva resistant PAS staining. Among proteins those rich in disulfides and sulhydryl groups are observed. Greater amounts of cytoplasmic RNA are observed in the reproductive season. Considerable amounts of lipids and phospholipids are also observed in the AS cells. The cytochemical differences between the NS cells and the nonsecretory neurons are also discussed.  相似文献   

15.
The neurosecretory cells of the supra- and suboesophageal ganglia of young, unmated, adult male midges, Chironomus riparius, have been examined by both light and electron microscopy. The 5 cell types recognized have been placed in three major categories on the basis of their ultrastructural characteristics:—α1 cells, of which there are 8 in each medial neurosecretory cell (MNC) group and 3 in each group of ventral neurosecretory cells (VNC), contain electron-dense granules, 150 to 200 nm in diameter; α2 cells containing irregular, electron-dense granules, 70 to 120 nm in diameter comprise the remaining 3 cells in each VNC group and the 2 or 3 cells in each outer neurosecretory cell (ONC) group; α3 cells, of which there are 1 or 2 on each side of the midline in the ventral cortex of the sub-oesophageal ganglion (SNC2), contain electron-lucent, spherical granules, 70 to 120 nm in diameter. The β cells contain spherical or ellipsoidal, electron-lucent granules, 80 to 100 nm in diameter, and make up the lateral neurosecretory cell (LNC) groups, each of three or four cells. The γ cells contain both spherical and flattened, electron-dense granules, 130 to 160 nm in diameter and 150 to 250 by 70 to 150 nm in size respectively, only 1 cell of this category being found in each half of the suboesophageal ganglion in the dorsal cortex (SNC1). Axons from the MNC and VNC form the nervi corporis cardiaci I (NCCI) and those of the LNC and ONC, the nervi corporis cardiaci II (NCCII). Those of the SNC1 appear to enter the wall of the stomodaeum but axons of the SNC2 could not be traced.  相似文献   

16.
The neurosecretory system of the giant garden slug Limax maximus was studied using the alcian blue/alcian yellow (AB/AY) staining technique for neurosecretion. Stainable cells could be identified in the paired cerebral, pleural, parietal, and buccal ganglia, and in the visceral ganglion. The cells occur as single cells or in groups of up to 100, with diameters ranging between 10 and 70 μm. Axon tracts could only be traced for a small number of cells; neurohemal areas were not conclusively identified. The morphological similarities of the neurosecretory system of L. maximus is compared with that of other investigated stylommatophoran slugs.  相似文献   

17.
Changes in the neurosecretory cell cytology of I. exustus subjected to hypertonic saline (0.1 ml of 1.5%/snail) loading and thermal stress (35°C) for two hours, have been investigated. Of the two types of neurosecretory cells A and B that are present in the central nervous system (CNS) of I. exustus, striking changes were evident only in B cells. After both treatments, there was about 33% decline in NSM (Neurosecretory material) intensity. However, the nuclear diameter of B cells was significantly (P < 0.001) increased in the snails administrated with hypertonic saline unlike in those exposed to 35°C wherein significant (P < 0.005) decline was evident. The adaptive significance of the neuroendocrine system of I exustus is discussed in relation to hydrothermal stress.  相似文献   

18.
Although the mealworm Tenebrio molitor inhabits very dry environments, it has at least two diuretic peptides, which increase fluid secretion by the free portions of the Malpighian tubules. Unlike other insect corticotropin-releasing factor (CRF)-related peptides isolated to date, these are non-amidated peptides. The immunocytochemical localization of Tenmo-DH(37) was investigated using antisera raised against this hormone. Immunoreactive neurosecretory cells were found in the brain and abdominal ganglia with immunoreactive processes projecting to the peripheral nervous system. Intense staining of the neurohaemal release site, the corpora cardiaca, was observed. In addition, neurosecretory cells immunoreactive to Tenmo-DH(37) were found in the posterior midgut and a network of immunoreactive nerve processes extended over the surface of the midgut. Tenmo-DH(37) is widely distributed and its staining pattern resembles that found for other, amidated CRF-related diuretic peptides.  相似文献   

19.
Antisera against corazonin were used to investigate distribution of immunoreactive cells in the central nervous system (CNS) of representatives of six insect orders: Ctenolepisma lineata (Zygentoma), Locusta migratoria (Orthoptera), Oxya yezoensis (Orthoptera), Gryllus bimaculatus (Orthoptera), Pyrrhocoris apterus (Hemiptera), Arge nigrinodosa (Hymenoptera), Athalia rosae (Hymenoptera), Bombyx mori (Lepidoptera) and Anomala cuprea (Coleoptera). Corazonin-like immunoreactive (CLI) cells were detected in the brain and ventral ganglia of all insects studied except for the albino strain of L. migratoria and the beetle A. cuprea. Implantation of the brain or different ganglia from insects with detected immunoreactivity induced dark coloration in the albino locust, providing further evidence for the presence of authentic corazonins [His(7)- and Arg(7)-isoforms] in these insects. The protocerebral lateral neurosecretory cells projecting into the ipsilateral retrocerebral neurohemal organs and bilateral longitudinal tracts extending and branching throughout the entire CNS seem to be a well-conserved part of the corazonin system in insects. The bilateral longitudinal tracts were formed by species-specific numbers of bilateral interneurons segmentally distributed in the ventral ganglia. Additional immunoreactive somata, mostly interneurons, were detected in the CNS of various insects. The distribution of corazonin in the cephalic neurosecretory system and in the bilateral interneurons suggests that corazonin acts as a hormone as well as a neurotransmitter or a neuromodulator. An ancient origin of corazonin is suggested by the presence of a corazonin-like substance in the primitive insect, C. lineata. These results support previous findings on the common occurrence of corazonin among insects, except for the albino strain of L. migratoria and the Coleoptera.  相似文献   

20.
Summary The ultrastructure of the neurosecretory cells in the paraventricular nucleus of the normal male rat was studied by electron microscopy during various functional states. Four morphologically distinct types of neurosecretory cells were observed. It appears that they do not represent different classes of cells but different phases of secretory activity of a single cell type. The perikarya of the neurosecretory cells show a definite cycle of formation and transportation of secretory granules. We have designated the phases of this cycle as: (1) phase of synthesis, (2) phase of granule production, (3) phase of granule storage and (4) phase of granule transport. The neurosecretory granules appear to be moved in bulk into the axons, forming a large axonal swelling filled with granules as a result of one cycle in the neurosecretory process. Thus it may be postulated that a secretory cycle in the perikaryon of the neurosecretory cell seems to result in the formation of a Herring body in its axon, and that its content is then conveyed to the posterior pituitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号