首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.  相似文献   

3.
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.  相似文献   

4.
The bilateral salivary glands, ducts, and nerves of the giant garden slug Limax maximus control the secretion of saliva and its transport to the buccal mass. Each salivary nerve, which originates at the buccal ganglion, contains over 3000 axon profiles. The axons innervate the musculature of the duct and branch within the gland. The salivary duct is composed of several muscular layers surrounding an epithelial layer which lines the duct lumen. The morphology of the duct epithelium indicates that it may function in ion or water balance. The salivary gland contains four major types of secretory cells. The secretory products are released from vacuoles in the gland cells, and are presumably transported by cilia in the collecting ducts of the gland into the larger muscular ducts.  相似文献   

5.
 The distribution of S-100 protein and its α- and β-subunits in bovine exocrine glands was studied by indirect immunohistochemistry. The entire spectrum of salivary glands, glands of the respiratory tract, intestinal glands, male and female genital glands, and skin glands was examined. S-100 and its β-subunit were identified in most serous secretory cells of mixed salivary glands, although secretory acini in some serous glands remained unreactive for these antigens. Mucous cells were constantly negative; mucoid cells were positive in the lacrimal and Harderian gland. The α-subunit of S-100 protein was identified in serous cells but the staining reaction was faint. Subunits of S-100 showed a characteristic distribution along the excretory duct systems of compound glands: S-100 and the β-subunit were present in intercalated duct epithelium, while striated duct epithelium stained for S100-α. Therefore, it is suggested that S100-α is related to resorption and secretion in striated ducts, while S100-β may govern acinar exocytosis and probably regulates proliferation and differentiation of glandular cells. Differing staining intensities for S-100 and its subunits in secretory cells of exocrine glands most probably indicate functional differences with regard to secretory activity and the cell cycle. Accepted: 11 February 1997  相似文献   

6.
Summary The immunohistochemical expression of MAM-3 and MAM-6 antigens was studied in developing human fetal salivary gland removed at autopsy of 22 normal fetuses of varying maturity (10–40 weeks of gestation). The onset of functional maturation in the fetal gland was seen at 21 weeks of gestational maturity. The acini and ducts then underwent distinct alterations in antigen expression with growth and maturation until the late developmental stage (33–40 weeks of gestation) when they resemble the adult salivary gland. The role of maturing duct cells in histogenesis of salivary gland tumours is discussed.  相似文献   

7.
Fluid secretion is observed at the openings of ducts in the exocrine gland. It remains unclear whether the ducts are involved in fluid secretion in the salivary glands. In the present study, we investigated the exclusion of fluorescent dye from the duct lumen by carbachol (CCh) in isolated parotid intralobular duct segments to clarify the ability of the ducts for the fluid secretion. When the membrane-impermeable fluorescent dye, sulforhodamine, was added to the superfused extracellular solution, quantitative fluorescence images of the duct lumen were obtained under the optical sectioning at the level of the duct lumen using a confocal laser scanning microscope. CCh decreased the fluorescent intensity in the duct lumen during the superfusion of the fluorescent dye, and CCh flushed out small viscous substances stained with the fluorescent dye from isolated duct lumen, suggesting that CCh might induce fluid secretion in the duct, leading to the clearance of the dye and small stained clumps from the duct lumen. CCh-induced clearance of the fluorescent dye was divided into two phases by the sensitivity to external Ca2+ and methazolamide, an inhibitor for carbonic anhydrase. The initial phase was insensitive to these, and the subsequent late phase was sensitive to these. A major portion in the late phase was inhibited by removal of bicarbonate in the superfusion solution and DPC, but not low concentration of external Cl-, bumetanide or DIDS, suggesting that methazolamide-sensitive production of HCO3-, but not the Cl- uptake mechanism, might contribute to the CCh-induced clearance of the dye from the duct lumen. These results represent the first measurements of fluid movement in isolated duct segments, and suggest that carbachol might evoke fluid secretion possibly through Ca2+-activated, DPC-sensitive anion channels with HCO3- secretion in the rat parotid intralobular ducts.  相似文献   

8.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

9.
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14–30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.  相似文献   

10.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

11.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

12.
Abstract

The salivary glands often are severely and permanently damaged by therapeutic irradiation for cancer of the head and neck. The markedly reduced quantity and quality of saliva results in greatly increased susceptibility to dental caries and infection of the oral mucosa and alveolar bone. Recently, subcapsular injection of cultured mouse salivary gland cells has achieved a significant degree of regeneration in a previously irradiated mouse salivary gland; however, the recovery was limited to one lobule. We describe here a method for delivering donor rat salivary gland cells via the main duct that distributes several thousand cells throughout the recipient rat's salivary gland. The donated cells exhibited the cytodifferentiation of the structures in which they lodged, i.e., acini, granular convoluted tubules, and the several types of ducts. This method may facilitate the simultaneous functional recovery of almost all of the lobules of irradiated rat salivary glands.  相似文献   

13.
Meprin is a membrane-bound metalloproteinase which is expressed at high levels in the brush border membrane of proximal tubules of kidneys of some mouse strains (referred to as high meprin-activity mice). The mature active proteinase is not present in kidneys of many inbred strains of mice; however, these low meprin-activity mice possess a kidney protein that crossreacts with polyclonal antibodies prepared against meprin. In the present studies, immunohistochemical methods were used to determine the presence of meprin in liver, pancreas, spleen, testis, thymus, kidney, salivary glands, stomach, duodenum, and skin. Meprin crossreactivity was observed only in kidney and salivary glands. In salivary glands, the enzyme was found on the luminal surface of intercalated and striated ducts of submandibular and parotid glands and on interlobular ducts of the latter. In both kidney and salivary glands, the intensity of immunochemical staining was greater in males compared with females. For both sexes, immunoreactivity was markedly greater in the high meprin-activity mice compared to the low meprin-activity mice. These studies indicate that meprin has a limited tissue distribution, and that genetic and hormonal factors that regulate the proteinase are similar in kidney and salivary glands. The localization of the proteinase implies that the enzyme functions in modifying proteins and peptides that are secreted or re-absorbed in the ducts of these tissues.  相似文献   

14.
15.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

16.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

17.
Besides the common labial and metapleural glands, four novel exocrine glands are described in the thorax of both workers and queens of the ponerine ant Myopias hollandi. From anterior to posterior, these glands were designated as the propleural pit gland, the posterolateral pronotal gland, the anterolateral propodeal gland and the metasternal process gland. They all correspond with class-3 glands, that are made up of bicellular units that each comprise a secretory cell and a duct cell. In the propleural pit gland, the ducts are characterized by a gradually widening diameter, while in the three other glands the ducts show a portion which displays a balloon-like expansion, that on semithin sections stains very dark. For none of these novel glands the function is known as yet, although ultrastructural examination indicates that they produce a non-proteinaceous and therefore possibly pheromonal secretion.  相似文献   

18.
19.
20.
The major lacrimal gland of rhesus monkeys is impalpable within the fatty connective tissue of the upper lateral quadrant of the orbit. Acini of the lacrimal glands are composed of both sparsely and heavily granulated cells that histochemically resemble serous acinar cells of the submandibular salivary gland. The cytoplasmic granules are strongly periodic acid-Schiff (PAS)-positive, and some are also stained by alcian blue for acidic mucosubstances. The lacrimal gland has a simple duct system of intralobular ducts and interlobular excretory ducts. Lymphocytes and plasma cells are common in the periductal stroma. Major lacrimal glands of rhesus monkeys are suitable for comparative and correlative studies of lacrimal and salivary diseases and radiation responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号