共查询到20条相似文献,搜索用时 8 毫秒
1.
microRNAs modulate iPS cell generation 总被引:1,自引:0,他引:1
2.
3.
近来研究发现小RNA(small RNAs)可作为转录后及翻译水平上基因表达调节的重要调节因子,利用小RNA来阐明调节精子发生的分子机制取得了显著进展。这些小RNA主要分为3类,即小干扰RNA(siRNA)、微小RNA(miRNA)以及与piwi蛋白相互作用的RNA(piRNA)。在减数分裂和精子发生过程中,小RNA具有多种生物学功能,如利用siRNA体外转染或体内注射来敲低特定基因从而研究该基因在精子发生过程中的作用;miRNA可能参与精子发生中有丝、减数及后减数分裂阶段的基因表达调节;piRNA主要参与调节雄性生殖细胞减数及后减数分裂的过程,在精子发生中起抑制反转录转座子(retrotransposons)的作用。文章对小RNAs合成、作用机制、功能及展望等最新进展进行了综述。 相似文献
4.
5.
为了证实慢病毒对细胞具有遗传修饰和重编程作用,在本实验中使用慢病毒感染猪胎儿成纤维细胞.结果显示:慢病毒介导的EGFP在猪胎儿成纤维细胞中稳定和高效表达,使用添加LIF和bFGF的细胞培养液,部分猪的胎儿成纤维细胞逐渐改变原有的纤维状形态,形成圆形的细胞,细胞逐步增殖形成细胞集落,细胞集落边界清晰,在饲养层上细胞集落生长迅速,具有稳定的生长性能和正常核型,细胞碱性磷酸酶染色为阳性,表达干细胞特有的标记Oct4、Nanog和SSEA1,在体外能够形成拟胚体,在体内分化形成包含三个生殖层的畸胎瘤.作为核移植的供体细胞,克隆胚的卵裂率为53.33%、桑椹胚率为9.03%、囊胚率为2.07%、孵化囊胚的总细胞数为26.5,在桑椹胚率和囊胚率方面显著低于猪普通胎儿成纤维细胞核移植克隆胚的发育能力(P<0.05).结果证实慢病毒能够直接使猪的胎儿成纤维细胞转变成iPS细胞,因此慢病毒将成为一种理想的材料和工具用于细胞的遗传修饰和细胞重构等方面的研究. 相似文献
6.
在植物细胞全能性研究的基础上引出动物细胞全能性这一热点研究课题.介绍了动物细胞全能性的表现,分析了细胞全能性表现程度差异的原因,最后对动物细胞全能性的广泛应用及存在的问题进行探讨,并对细胞命运及其调控进行了展望. 相似文献
7.
8.
9.
The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry. 相似文献
10.
Bader Alshehri 《Saudi Journal of Biological Sciences》2021,28(4):2408-2422
Exosomal microRNAs (miRNAs) critically regulate several major intracellular and metabolic activities, including cancer evolution. Currently, increasing evidence indicates that exosome harbor and transport these miRNAs from donor cells to neighboring and distantly related recipient cells, often in a cross-species manner. Several studies have reported that plant-based miRNAs can be absorbed into the serum of humans, where they hinder the expression of human disease-related genes. Moreover, few recent studies have demonstrated the role of these xenomiRs in cancer development and progression. However, the cross-kingdom gene regulation hypothesis remains highly debatable, and many follow up studies fail to reproduce the same. There are reports that show no effect of plant-derived miRNAs on mammalian cancers. The foremost cause of this controversy remains the lack of reproducibility of the results. Here, we reassess the latest developments in the field of cross-kingdom transference of miRNAs, emphasizing on the role of the diet-based xenomiRs on cancer progression. 相似文献
11.
12.
Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids
Given the emerging roles of microRNAs (miRNAs) as key regulator of mRNA stability we assessed their expression profile in paired myometrium and leiomyoma, their isolated smooth muscle cells (MSMC and LSMC), a spontaneously transformed leiomyoma smooth muscle cells (T-LSMC) and SK-LMS-1, a leiomyosarcoma cell line using microarray and real time PCR.Based on global normalization of expression values of 385 miRNAs and statistical analysis (anova), 91 miRNAs were expressed above the threshold levels in myometrium, with a progressive decline in numbers in leiomyomas, MSMC, LSMC, T-LSMC and SK-LMS-1 (P<0.05).We selected and validated the expression of miR-20a, miR-21, miR-26a, miR-18a, miR-206, miR-181a and miR-142-5p and found their differential expression in tissue and cell-specific manners (P<0.05).Treatments of MSMC and LSMC with 17beta estradiol and medroxyprogesterone acetate (10(-8)M), or ICI-182780 and RU-486 (10(-6)M) resulted in differential regulation of these miRNAs (P<0.05).In conclusion, the expression of a number of miRNAs in myometrium and leiomyoma with their progressive aberrant from normal MSMC into LSMC, transformed and cancerous stage, suggests that miRNAs and their regulation by ovarian steroids play a key role in pathogenesis of leiomyoma through gene expression stability. 相似文献
13.
14.
15.
Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3′ UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition. 相似文献
16.
Cell therapy using human embryonic stem cells (hESCs) is a promising therapeutic option for Parkinson's disease (PD), an incurable neurodegenerative disease. A prerequisite for clinical application of hESCs for PD is an efficient and strict differentiation of hESCs into midbrain dopamine (mDA) neuron‐like cells, which would be directly translated into high effectiveness of the therapy with minimum risk of undesirable side effects. Due to fruitful efforts from many laboratories, a variety of strategies for improving efficiency of dopaminergic differentiation from hESCs have been developed, mostly by optimizing culture conditions, genetic modification, and modulating intracellular signaling pathways. The rapid advances in the fields of dopaminergic differentiation of hESCs, prevention of tumor formation, and establishment of safe human induced pluripotent stem cells (hiPSCs) would open the door to highly effective, tumor‐free, and immune rejection‐free cell therapy for PD in the near future. J. Cell. Biochem. 109: 292–301, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
17.
18.
长链非编码RNA(long non-coding RNA, lncRNA)是一类转录本长度超过200nt、不编码蛋白质的RNA。近年来,随着染色质构象捕获及转录组测序等技术的发展,lncRNA与染色质构象间的关系越来越受到重视。多项研究表明,lncRNA在基因调控网络中具有重要的作用,可通过影响细胞核高级结构的动态变化来调控真核基因的表达。因其广泛的基因调控功能及在肿瘤发生过程中的重要作用,lncRNA被认为是未来肿瘤临床诊断和预后判定的新型标志物之一。本文旨在介绍lncRNA改变细胞核高级结构从而调控关键基因表达的分子机制,并详细介绍lncRNA在肿瘤治疗中的临床意义。 相似文献
19.
自2006年Takahashi和Yamanaka首次成功地从小鼠成纤维细胞诱导得到诱导多能性干细胞(Induced pluripotent stem cells,iPS细胞)以来,iPS细胞由于其潜在的广阔应用前景而迅速成为干细胞研究领域的新热点;与此同时,iPS细胞的遗传安全性也越来越多地受到人们的关注。文章将对iPS细胞遗传安全性的研究进展进行综述,分析造成iPS细胞遗传不稳定的可能原因,希望可以促进对iPS细胞诱导条件的优化,获得遗传上较为安全的iPS细胞。 相似文献
20.
RNA interference is one of the most important mechanisms regulating gene expression. Small interfering RNAs (siRNAs) play an essential role in cell defense against virus infection or retrotransposons. The use of siRNAs gives wide opportunities for treating virus infections and cancer. RNA interference allows rapid construction of monogenic functional knockouts, thereby providing a convenient tool for researchers. The review considers the current views of the mechanisms of RNA interference and modern approaches to its practical application. 相似文献